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Abstract
Programs written in dynamic languages make heavy use of features
— run-time type tests, value-indexed dictionaries, polymorphism,
and higher-order functions — that are beyond the reach of type sys-
tems that employ either purely syntactic or purely semantic reason-
ing. We present a core calculus, System D, that merges these two
modes of reasoning into a single powerful mechanism of nested re-
finement types wherein the typing relation is itself a predicate in the
refinement logic. System D coordinates SMT-based logical impli-
cation and syntactic subtyping to automatically typecheck sophisti-
cated dynamic language programs. By coupling nested refinements
with McCarthy’s theory of finite maps, System D can precisely rea-
son about the interaction of higher-order functions, polymorphism,
and dictionaries. The addition of type predicates to the refinement
logic creates a circularity that leads to unique technical challenges
in the metatheory, which we solve with a novel stratification ap-
proach that we use to prove the soundness of System D.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams – Logics of Programs

General Terms Languages, Verification

Keywords Refinement Types, Dynamic Languages

1. Introduction
So-called dynamic languages like JavaScript, Python, Racket, and
Ruby are popular as they allow developers to quickly put together
scripts without having to appease a static type system. However,
these scripts quickly grow into substantial code bases that would
be much easier to maintain, refactor, evolve and compile, if only
they could be corralled within a suitable static type system.

The convenience of dynamic languages comes from their sup-
port of features like run-time type testing, value-indexed finite
maps (i.e. dictionaries), and duck typing, a form of polymorphism
where functions operate over any dictionary with the appropriate
keys. As the empirical study in [18] shows, programs written in dy-
namic languages make heavy use of these features, and their safety
relies on invariants which can only be established by sophisticated
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reasoning about the flow of control, the run-time types of values,
and the contents of data structures like dictionaries.

The following code snippet, adapted from the popular Dojo
Javascript framework [36], illustrates common dynamic features:

let onto callbacks f obj =
if f = null then

new List(obj, callbacks)
else

let cb = if tag f = "Str" then obj[f] else f in
new List(fun () -> cb obj, callbacks)

The function onto is used to register callback functions to be called
after the DOM and required library modules have finished loading.
The author of onto went to great pains to make it extremely
flexible in the kinds of arguments it takes. If the obj parameter
is provided but f is not, then obj is the function to be called
after loading. Otherwise, both f and obj are provided, and either:
(a) f is a string, obj is a dictionary, and the (function) value
corresponding to key f in obj is called with obj as a parameter
after loading; or (b) f is a function which is called with obj as a
parameter after loading. To verify the safety of this program, and
dynamic code in general, a type system must reason about dynamic
type tests, control flow, higher-order functions, and heterogeneous,
value-indexed dictionaries.

Current automatic type systems are not expressive enough to
support the full spectrum of reasoning required for dynamic lan-
guages.1 Syntactic systems use advanced type-theoretic constructs
like structural types [3], row types [38], intersection types [17], and
union types [18, 39] to track invariants of individual values. Un-
fortunately, such techniques cannot reason about value-dependent
relationships between program variables, as is required, for exam-
ple, to determine the specific types of the variables f and obj in
onto. Semantic systems like [4, 6, 14, 23, 31, 35] support such rea-
soning by using logical predicates to describe invariants over pro-
gram variables. Unfortunately, such systems require a clear (syntac-
tic) distinction between complex values that are typed with arrows,
type variables, etc., and base values that are typed with predicates.
Hence, they cannot support the interaction of complex values and
value-indexed dictionaries that is ubiquitous in dynamic code, for
example in onto, which can take as a parameter a dictionary con-
taining a function value.

Our Approach. We present System D, a core calculus that sup-
ports fully automatic checking of dynamic idioms. In System D all
values are described uniformly by formulas drawn from a decid-
able, quantifier-free refinement logic. Our first key insight is that
to reason precisely about complex values (e.g. higher-order func-
tions) nested deeply inside structures (e.g. dictionaries), we require

1 Full dependent type systems like Coq [5] can support the necessary rea-
soning, but are not automatic as the programmer must provide explicit
proofs to discharge type checking obligations.



a single new mechanism called nested refinements wherein syntac-
tic types (resp. the typing relation) may be nested as special type
terms (resp. type predicates) inside the refinement logic. Formally,
the refinement logic is extended with atomic formulas of the form
x :: U where U is a type term, “::” (read “has type”) is a bi-
nary, uninterpreted predicate in the refinement logic, and where
the formula states that the value x “has the type” described by the
term U . This unifying insight allows to us to express the invariants
in idiomatic dynamic code like onto — including the interaction
between higher-order functions and dictionaries — while staying
within the boundaries of decidability.

Expressiveness. The nested refinement logic underlying System
D can express complex invariants between base values and richer
values. For example, we may disjoin two tag-equality predicates

{ν | tag(ν) = “Int” ∨ tag(ν) = “Str”}
to type a value ν that is either an integer or a string; we can then
track control flow involving the dynamic type tag-lookup function
tag to ensure that the value is safely used at either more specific
type. To describe values like the argument f of the onto function
we can combine tag-equality predicates with the type predicate. We
can give f the type

{ν | ν = null ∨ tag(ν) = “Str” ∨ ν :: Top → Top}
where Top is an abbreviation for {ν | true}, which is a type that
describes all values. Notice the uniformity — the types nested
within this refinement formula are themselves refinement types.

Our second key insight is that dictionaries are finite maps, and
so we can precisely type dictionaries with refinement formulas
drawn from the (decidable) theory of finite maps [25]. In particular,
McCarthy’s two operators — sel(x, a), which corresponds to the
contents of the map x at the address a, and upd(x, a, v), which
corresponds to the new map obtained by updating x at the address
a with the value v — are precisely what we need to describe reads
from and updates to dictionaries. For example, we can write

{ν | tag(ν) = “Dict” ∧ tag(sel(ν, y)) = “Int”}
to type dictionaries ν that have (at least) an integer field y, where
y is a program variable that dynamically stores the key with which
to index the dictionary. Even better, since we have nested function
types into the refinement logic, we can precisely specify, for the
first time, combinations of dictionaries and functions. For example,
we can write the following type for obj

{ν | tag(f) = “Str”⇒ sel(ν, f) :: Top → Top}
to describe the second portion of the onto specification, all while
staying within a decidable refinement logic. In a similar manner,
we show how nested refinements support polymorphism, datatypes,
and even a form of bounded quantification.

Subtyping. The huge leap in expressiveness yielded by nesting
types inside refinements is accompanied by some unique techni-
cal challenges. The first challenge is that because we nest complex
types (e.g. arrows) as uninterpreted terms in the logic, subtyping
(e.g. between arrows) cannot be carried out solely via the usual syn-
tactic decomposition into SMT queries [6, 16, 31]. (A higher-order
logic (e.g. [5]) would solve this problem, but that would preclude
algorithmic checking; we choose the uninterpreted route precisely
to relieve the SMT solver of higher-order reasoning!) We surmount
this challenge with a novel decomposition mechanism where sub-
typing between types, syntactic type terms, and refinement formu-
las are defined inter-dependently, thereby using the logical struc-
ture of the refinement formulas to divide the labor of subtyping
between the SMT solver for ground predicates (e.g. equality, unin-
terpreted functions, arithmetic, maps, etc.) and classical syntactic
rules for type terms (e.g. arrows, type variables, datatypes).

Soundness. The second challenge is that the inter-dependency
between the refinement logic and the type system renders the stan-
dard proof techniques for (refinement) type soundness inapplicable.
In particular, we illustrate how uninterpreted type predicates break
the usual substitution property and how nesting makes it difficult to
define a type system that is well-defined and enjoys this property.
We meet this challenge with a new proof technique: we define an
infinite family of increasingly precise systems and prove soundness
of the family, of which System D is a member, thus establishing the
soundness of System D.

Contributions. To sum up, we make the following contributions:
• We show how nested refinements over the theory of finite maps

encode function, polymorphic, dictionary and constructed data
types within refinements and permit dependent structural sub-
typing and a form of bounded quantification.
• We develop a novel algorithmic subtyping mechanism that

uses the structure of the refinement formulas to decompose
subtyping into a collection of SMT and syntactic checks.
• We illustrate the technical challenges that nesting poses to the

metatheory of System D and present a novel stratification-
based proof technique to establish soundness.
• We define an algorithmic version of the type system with local

type inference that we implement in a prototype checker.
Thus, by carefully orchestrating the interplay between syntactic-
and SMT-based subtyping, the nested refinement types of System
D enable, for the first time, the automatic static checking of features
found in idiomatic dynamic code.

2. Overview
We start with a series of examples that give an overview of our ap-
proach. First, we show how by encoding types using logical refine-
ments, System D can reason about control flow and relationships
between program variables. Next, we demonstrate how nested re-
finements enable precise reasoning about values of complex types.
After that, we illustrate how System D uses refinements over the
theory of finite maps to analyze value-indexed dictionaries. We
conclude by showing how these features combine to analyze the
sophisticated invariants in idiomatic dynamic code.

Notation. We use the following abbreviations for brevity.

Top(x) $ true

Int(x) $ tag(x) = “Int”

Bool(x) $ tag(x) = “Bool”

Str(x) $ tag(x) = “Str”

Dict(x) $ tag(x) = “Dict”

IorB(x) $ Int(x) ∨ Bool(x)

We abuse notation to use the above as abbreviations for refine-
ment types; for each of the unary abbreviations T defined above,
an occurrence without the parameter denotes the refinement type
{ν |T (ν)}. For example, we write Int as an abbreviation for
{ν | tag(ν) = “Int”}. Recall that function values are also de-
scribed by refinement formulas (containing type predicates). We
often write arrows outside refinements to abbreviate the following:

x :T1→ T2 $ {ν | ν :: x :T1→ T2}
We write T1→ T2 when the return type T2 does not refer to x.

2.1 Simple Refinements
To warm up, we show how System D describes all types through
refinement formulas, and how, by using an SMT solver to discharge



the subtyping (implication) queries, System D makes short work of
value- and control flow-sensitive reasoning [18, 39].

Ad-Hoc Unions. Our first example illustrates the simplest dy-
namic idiom: programs which operate on ad-hoc unions. The func-
tion negate takes an integer or boolean and returns its negation:

let negate x =
if tag x = "Int" then 0 - x else not x

In System D we can ascribe to this function the type

negate :: IorB → IorB

which states that the function accepts an integer or boolean argu-
ment and returns either an integer or boolean result.

To establish this, System D uses the standard means of reason-
ing about control flow in refinement-based systems [31], namely
strengthening the environment with the guard predicate when pro-
cessing the then-branch of an if-expression and the negation of the
guard predicate for the else-branch. Thus, in the then-branch, the
environment contains the assumption that tag(x) = “Int”, which
allows System D to verify that the expression 0 − x is well-typed.
The return value has the type {ν | tag(ν) = “Int” ∧ ν = 0− x}.
This type is a subtype of IorB as the SMT solver can prove that
tag(ν) = “Int” and ν = 0 − x implies tag(ν) = “Int” ∨
tag(ν) = “Bool”. Thus, the return value of the then-branch is
deduced to have type IorB .

On the other hand, in the else-branch, the environment contains
the assumption ¬(tag(x) = “Int”). By combining this with the
assumption about the type of negate’s input, tag(x) = “Int” ∨
tag(x) = “Bool”, the SMT solver can determine that tag(x) =
“Bool”. This allows our system to type check the call to

not :: Bool → Bool ,

which establishes that the value returned in the else branch has
type IorB . Thus, our system determines that both branches return
a value of type IorB , and thus that negate meets its specification.

Dependent Unions. System D’s use of refinements and SMT
solvers enable expressive relational specifications that go beyond
previous techniques [18, 39]. While negate takes and returns ad-
hoc unions, there is a relationship between its input and output: the
output is an integer (resp. boolean) iff the input is an integer (resp.
boolean). We represent this in System D as

negate :: x :IorB → {ν | tag(ν) = tag(x)}

That is, the refinement for the output states that its tag is the same
as the tag of the input. This function is checked through exactly the
same analysis as before; the tag test ensures that the environment in
the then- (resp. else-) branch implies that x and the returned value
are both Int (resp. Bool ). That is, in both cases, the output value
has the same tag as the input.

2.2 Nested Refinements
So far, we have seen how old-fashioned refinement types (where
the predicates refine base values [6, 23, 27, 31]) can be used to
check ad-hoc unions over base values. However, a type system
for dynamic languages must be able to express invariants about
values of base and function types with equal ease. We accomplish
this in System D by adding types (resp. the typing relation) to the
refinement logic as nested type terms (resp. type predicates).

However, nesting raises a rather tricky problem: with the typing
relation included in the refinement logic, subtyping can no longer
be carried out entirely via SMT implication queries [6]. We solve
this problem with a new subtyping rule that extracts type terms
from refinements to enable syntactic subtyping for nested types.

Consider the function maybeApply which takes an integer x and
a value f which is either null or a function over integers:

let maybeApply x f =
if f = null then x else f x

In System D, we can use a refinement formula that combines a base
predicate and a type predicate to assign maybeApply the type

maybeApply :: Int → {ν | ν = null ∨ ν :: Int→Int} → Int

Note that we have nested a function type as a term in the refine-
ment logic, along with an assertion that a value has this particu-
lar function type. However, to keep checking algorithmic, we use
a simple first-order logic in which type terms and predicates are
completely uninterpreted; that is, the types can be thought of as
constant terms in the logic. Therefore, we need new machinery to
check that maybeApply actually enjoys the above type, i.e. to check
that (a) f is indeed a function when it is applied, (b) it can accept
the input x, and (c) it will return an integer.

Type Extraction. To accomplish the above goals, we extract the
nested function type for f stored in the type environment as follows.
Let Γ be the type environment at the callsite (f x). For each type
term U occurring in Γ, we query the SMT solver to determine
whether JΓK⇒ f :: U holds, where JΓK is the embedding of Γ into
the refinement logic where type terms and predicates are treated in
a purely uninterpreted way. If so, we say that U must flow to (or
just, flows to) the caller expression f. Once we have found the type
terms that flow to the caller expression, we map the uninterpreted
type terms to their corresponding type definitions to check the call.

Let us see how this works for maybeApply. The then-branch
is trivial: the assumption that x is an integer in the environment
allows us to deduce that the expression x is well-typed and has
type Int . Next, consider the else-branch. Let U1 be the type term
Int → Int . Due to the bindings for x and f and the else-condition,
the environment Γ is embedded as

JΓK $ tag(x) = “Int” ∧ (f = null ∨ f :: U1)∧ ¬(f = null)

Hence, the SMT solver is able to prove that Γ ⇒ f :: U1. This
establishes that f is a function on integers and, since x is known to
be an integer, we can verify that the else-branch has type Int and
hence check that maybeApply meets its specification.

Nested Subtyping. Next, consider a client of maybeApply:

let _ = maybeApply 42 negate

At the call to maybeApply we must show that the actuals are
subtypes of the formals, i.e. that the two subtyping relationships

Γ1 ` {ν | ν = 42} v Int

Γ1 ` {ν | ν = negate} v {ν | ν = null ∨ ν :: U1} (1)

hold, where Γ1 $ negate :{ν | ν :: U0}, maybeApply : · · · and
U0 = x :IorB → {ν | tag(ν) = tag(x)}. Alas, while the SMT
solver can make short work of the first obligation, it cannot be used
to discharge the second via implication; the “real” types that must
be checked for subsumption, namely, U0 and U1, are embedded as
totally unrelated terms in the refinement logic!

Once again, extraction rides to the rescue. We show that all sub-
typing checks of the form Γ ` {ν | p} v {ν | q} can be reduced to
a finite number of sub-goals of the form:

(“type predicate-free”) JΓ′K⇒ p′

or (“type predicate”) JΓ′K⇒ x :: U

The former kind of goal has no type predicates and can be directly
discharged via SMT. For the latter, we use extraction to find the
finitely many type terms Ui that flow to x. (If there are none, the



check fails.) For each Ui we use syntactic subtyping to verify that
the corresponding type is subsumed by (the type corresponding to)
U under Γ′.

In our example, the goal 1 reduces to proving either

JΓ′1K⇒ ν = null or JΓ′1K⇒ ν :: U1

where Γ′1 $ Γ1, ν = negate. The former implication contains
no type predicates, so we attempt to prove it by querying the SMT
solver. The solver tells us that the query is not valid, so we turn
to the latter implication. The extraction procedure uses the SMT
solver to deduce that, under Γ′1 the type term U0 flows into ν. Thus,
all that remains is to retrieve the definition of U0 and U1 and check

Γ′1 ` x :IorB → {ν | tag(ν) = tag(x)} v Int → Int

which follows via standard syntactic refinement subtyping [16],
thereby checking the client’s call. Thus, by carefully interleaving
SMT implication and syntactic subtyping, System D enables, for
the first time, the nesting of rich types within refinements.

2.3 Dictionaries
Next, we show how nested refinements allow System D to precisely
check programs that manipulate dynamic dictionaries. In essence,
we demonstrate how structural subtyping can be done via nested
refinement formulas over the theory of finite maps [13, 25]. We
introduce two abbreviations for dictionaries.

Fld(x, y, Int) $ Dict(x) ∧ Str(y) ∧ Int(sel(x, y))

Fld(x, y, U) $ Dict(x) ∧ Str(y) ∧ sel(x, y) :: U

The second abbreviation states that the type of a field is a syntactic
type term U (e.g. an arrow).

Dynamic Lookup. SMT-based structural subtyping allows System
D to support the common idiom of dynamic field lookup and up-
date, where the field name is a value computed at run-time. Con-
sider the following function:

let getCount t c =
if has t c then toInt (t[c]) else 0

The function getCount uses the primitive operation

has :: d :Dict → k :Str → {ν |Bool(ν) ∧ ν = true⇔ has(d, k)}
to check whether the key c exists in t. The refinement for the
input d expresses the precondition that d is a dictionary, while
the refinement for the key k expresses the precondition that k is
a string. The refinement of the output expresses the postcondition
that the result is a boolean value which is true if and only if d has a
binding for the key k, expressed in our refinements using has(d, k),
a predicate in the theory of maps that is true if and only if there is a
binding for key k in the map d [13, 25].

The dictionary lookup t[c] is desugared to get t c where the
primitive operation get has the type

get :: d :Dict→k :{ν |Str(ν) ∧ has(d, k)}→{ν | ν = sel(d, k)}
and sel(d, k) is an operator in the theory of maps that returns the
binding for key k in the map d. The refinement for the key k
expresses the precondition that it is a string value in the domain
of the dictionary d. Similarly, the refinement for the output asserts
the postcondition that the value is the same as the contents of the
map at the given key.

The function getCount first tests that the dictionary t has a
binding for the key c; if so, it is read and its contents are converted
to an integer using the function toInt, of type Top→Int . Note that
the if-guard strengthens the environment under which the lookup
appears with the fact has(t, c), ensuring the safety of the lookup.
If t does not contain the key c, the default value 0 is returned. Both

branches are thus verified to have type Int , so System D verifies
that getCount has the type getCount :: Dict → Str → Int .

Dynamic Update. Dually, to allow dynamic updates, System D
includes a primitive

set :: d :Dict → k :Str → x :Top→ {ν | ν = upd(d, k, x)}

that produces a new dictionary, where upd(d, k, x) is an operator
in the theory of maps that denotes d updated (or extended) with
a binding from k to x. The following illustrates how the set
primitive can be used:

let incCount t c =
let newcount = 1 + getCount t c in
let res = set t c newcount in res

We give the function incCount the type

d :Dict → c :Str → {ν |EqMod(ν, d, {c}) ∧ Fld(ν, c, Int)}

where EqMod(d1, d2,K) abbreviates a predicate that stipulates
that d1 is identical to d2 at all keys except for those in K.
The output type of getCount allows System D to conclude that
newcount :: Int . From the type of set, System D deduces

res :: {ν |EqMod(ν, t, {c}) ∧ sel(ν, c) = newcount}

which is a subtype of the output type of incCount. Next, consider

let d0 = {"files" = 42 }
let d1 = incCount d0 "dirs"
let _ = d1["files"] + d1["dirs"]

System D verifies that

d0 :: {ν |Fld(ν, “files”, Int)}
d1 :: {ν |Fld(ν, “files”, Int) ∧ Fld(ν, “dirs”, Int)}

and, hence, the field lookups return Ints that can be safely added.

2.4 Type Constructors
Next, we use nesting and extraction to enrich System D with data
structures, thereby allowing for very expressive specifications. In
general, System D supports arbitrary user-defined datatypes, but to
keep the current discussion simple, let us consider a single type
constructor List [T ] for representing unbounded sequences of T -
values. Informally, an expression of type List [T ] is either a special
null value or a dictionary with a “hd” key of type T and a “tl”
key of type List [T ]. As for arrows, we use the following notation
to write list types outside of refinements:

List [T ] $ {ν | ν :: List [T ]}

Recursive Traversal. Consider a textbook recursive function that
takes a list of arbitrary values and concatenates the strings:

let rec concat sep xs =
if xs = null then "" else
let hd = xs["hd"] in
let tl = xs["tl"] in
if tag hd != "Str" then concat sep tl
else if tl != null then hd ^ sep ^ concat sep tl
else hd

We ascribe the function the type concat :: Str → List [Top]→Str .
The null test ensures the safety of the “hd” and “tl” accesses and
the tag test ensures the safety of the string concatenation using the
techniques described above.



Nested Ad-Hoc Unions. We can now define ad-hoc unions over
constructed types by simply nesting List [·] as a type term in the
refinement logic. The following illustrates a common Python idiom
when an argument is either a single value or a list of values:

let runTest cmd fail_codes =
let status = syscall cmd in
if tag fail_codes = "Int" then
not (status = fail_codes)

else
not (listMem status fail_codes)

Here, listMem :: Top→List [Top]→Bool and syscall :: Str→Int .
The input cmd is a string, and fail_codes is either a single inte-
ger or a list of integer failure codes. Because we nest List [·] as a
type term in our logic, we can use the same kind of type extraction
reasoning as we did for maybeApply to ascribe runTest the type

runTest :: Str → {ν | Int(ν) ∨ ν :: List [Int ]} → Bool

2.5 Parametric Polymorphism
Similarly, we can add parametric polymorphism to System D by
simply treating type variables A,B, etc. as (uninterpreted) type
terms in the logic. As before, we use the following notation to write
type variables outside of refinements.

A $ {ν | ν :: A}

Generic Containers. We can compose the type constructors in
the ways we all know and love. Here is list map in System D:

let rec map f xs =
if xs = null then null
else new List(f xs["hd"], map f xs["tl"])

(Of course, pattern matching would improve matters, but we are
merely trying to demonstrate how much can be — and is! —
achieved with dictionaries.) By combining extraction with the rea-
soning used for concat, it is easy to check that

map :: ∀A,B. (A→B)→ List [A]→List [B]

Note that type abstractions are automatically inserted where a func-
tion is ascribed a polymorphic type.

Predicate Functions. Consider the list filter function:

let rec filter f xs =
if xs = null then null
else if not (f xs["hd"]) then filter f (xs["tl"])
else new List(xs["hd"], filter f xs["tl"])

In System D, we can ascribe filter the type

∀A,B. (x :A→ {ν | ν = true⇒ x :: B})→ List [A]→ List [B],

Note that the return type of the predicate, f, tells us what type
is satisfied by values x for which f returns true, and the return
type of filter states that the items filter returns all have the
type implied by the predicate f. Thus, the general mechanism of
nested refinements subsumes the kind of reasoning performed by
specialized techniques like latent predicates [39].

Bounded Quantification. Nested refinements enable a form of
bounded quantification. Consider the function

let dispatch d f = d[f] d

The function dispatch works for any dictionary d of type A that
has a key f bound to a function that maps values of typeA to values
of type B. We can specify this via the dependent signature

∀A,B. d :{ν |Dict(ν) ∧ ν :: A} → {ν |Fld(d, ν,A→B)} → B

Note that there is no need for explicit type bounds; all that is
required is the conjunction of the appropriate nested refinements.

2.6 All Together Now
With the tools we’ve developed in this section, System D is now ca-
pable of type checking sophisticated code from the wild. The origi-
nal source code for the following can be found in a technical report [8].

Unions, Generic Dispatch, and Polymorphism. We now have
everything we need to type the motivating example from the in-
troduction, onto, which combined multiple dynamic idioms: dy-
namic fields, tag-tests, and the dependency between nested dictio-
nary functions and their arguments. Nested refinements let us for-
malize the flexible interface for onto given in the introduction:

∀A. callbacks :List [Top → Top]

→ f :{ν | ν = null ∨ Str(ν) ∨ ν :: A→ Top}
→ obj :{ν | ν :: A ∧ (f = null⇒ ν :: Top → Top)

∧ (Str(f)⇒ Fld(ν, f, A→ Top))}
→ List [Top → Top]

Using reasoning similar to that used in the previous examples,
System D checks that onto enjoys the above type, where the spec-
ification for obj is enabled by the kind of bounded quantification
described earlier.

Reflection. Finally, to round off the overview, we present one last
example that shows how all the features presented combine to allow
System D to statically type programs that introspect on the contents
of dictionaries. The function toXML shown below is adapted from
the Python 3.2 standard library’s plistlib.py [37]:

let rec toXML x =
if tag x = "Bool" then

if x then element "true" null
else element "false" null

else if tag x = "Int" then
element "integer" (intToStr x)

else if tag x = "Str" then
element "string" x

else if tag x = "Dict" then
let ks = keys x in
let vs = map {v| Str(v) and has(x,v)} Str
(fun k -> element "key" k ^ toXML x[k]) ks in

"<data>" ^ concat "\n" vs ^ "</data>"
else element "function" null

The function takes an arbitrary value and renders it as an XML
string, and illustrates several idiomatic uses of dynamic features. If
we give the auxiliary function intToStr the type Int → Str and
element the type Str → {ν | ν = null ∨ Str(ν)} →Str , we can
verify that

toXML :: Top → Str

Of especial interest is the dynamic field lookup x[k] used in the
function passed to map to recursively convert each binding of the
dictionary to XML. The primitive operation keys has the type

keys :: d :Dict → List [{ν |Str(ν) ∧ has(d, ν)}]
that is, it returns a list of string keys that belong to the input dictio-
nary. Thus, ks has type List [{ν |Str(ν) ∧ has(x, ν)}], which en-
ables the call to map to typecheck, since the body of the argument
is checked in an environment where k :: {ν |Str(ν) ∧ has(x, ν)},
which is the type thatA is instantiated with. This binding suffices to
prove the safety of the dynamic field access. The control flow rea-
soning described previously uses the tag tests guarding the other
cases to prove each of them safe.



w ::= Values
| x variable
| c constant
| w1 ++ {w2 7→ w3} dictionary extension
| λx. e function
| λA. e type function
| C(w) constructed data

e ::= Expressions
| w value
| w1 w2 function application
| w [T ] type function application
| if w then e1 else e2 if-then-else
| let x = e1 in e2 let-binding

td ::= type C[θA]{f :T} Datatype Definitions

prg ::= td ; e Programs

lw ::= Logical Values
| w value
| F (lw) logical function application

p, q, r ::= Refinement Formulas
| P (lw) predicate
| lw :: U type predicate
| p ∧ q | p ∨ q | ¬p logical connective

T ::= {ν | p} Refinement Types

U ::= Type Terms
| x :T1→ T2 arrow
| A type variable
| C[T ] constructed type
| Null null

S ::= T | ∀A. S Type Schemes

Figure 1. Syntax of System D

3. Syntax and Semantics
We begin with the syntax and evaluation semantics of System D.
Figure 1 shows the syntax of values, expressions, and types.

Values. Values w include variables constants, functions, type
functions, dictionaries, and records created by type constructors.
The set of constants c includes base values like integer, boolean,
and string constants, the empty dictionary {}, and null. Logical
values lw are all values and applications of primitive function sym-
bols F , such as addition + and dictionary selection sel , to logical
values. The constant tag allows introspection on the type tag of a
value at run-time. For example,

tag(3) $ “Int” tag(true) $ “Bool”
tag(“john”) $ “Str” tag(λx. e) $ “Fun”

tag({}) $ “Dict” tag(λA. e) $ “TFun”

Dictionaries. A dictionaryw1 ++ {w2 7→ w3} extends the dictio-
nary w1 with the binding from string w2 to value w3. For example,
the dictionary mapping “x” to 3 and “y” to true is written

{} ++ {“x” 7→ 3} ++ {“y” 7→ true}.

The set of constants also includes operations for extending dictio-
naries and accessing their fields. The function get is used to access

dictionary fields and is defined

get (w ++ {“x” 7→ wx}) “x” $ wx

get (w ++ {“y” 7→ wy}) “x” $ get w “x”

The function has tests for the presence of a field and is defined

has (w ++ {“y” 7→ wy}) “x” $ has w “x”

has (w ++ {“x” 7→ wx}) “x” $ true

has {} “x” $ false

The function set updates the value bound to a key and is defined

set d k w $ d ++ {k 7→ w}

Expressions. The set of expressions e consists of values, function
applications, type instantiations, if-then-else expressions, and let-
bindings. We use an A-normal presentation so that we need only
define substitution of values (not arbitrary expressions) into types.

Types. We stratify types into monomorphic types T and polymor-
phic type schemes ∀A. S. In System D, a type T is a refinement
type of the form {ν | p}, where p is a refinement formula, and is
read “ν such that p.” The values of this type are all values w such
that the formula p[w/ν] “is true.” What this means, formally, is
core to our approach and will be considered in detail in section 5.

Refinement Formulas. The language of refinement formulas in-
cludes predicates P , such as the equality predicate and dictionary
predicates has and sel , and the usual logical connectives. For ex-
ample, the type of integers is {ν | tag(ν) = “Int”}, which we
abbreviate to Int . The type of positive integers is

{ν | tag(ν) = “Int” ∧ ν > 0}
and the type of dictionaries with an integer field “f” is

{ν | tag(ν) = “Dict” ∧ tag(sel(ν, “f”)) = “Int”}.
We refer to the binder ν in refinement types as “the value variable.”

Nesting: Type Predicates and Terms. To express the types of val-
ues like functions and dictionaries containing functions, System D
permits types to be nested within refinement formulas. Formally,
the language of refinement formulas includes a form, lw :: U,
called a type predicate, where U is a type term. The type term
x :T1 → T2 describes values that have a dependent function type,
i.e. functions that accept arguments w of type T1 and return values
of type T2[w/x], where x is bound in T2. We write T1→ T2 when
x does not appear in T2. Type terms A,B, etc. correspond to type
parameters to polymorphic functions. The type term Null corre-
sponds to the type of the constant value null. The type term C[T ]
corresponds to records constructed with the C type constructor in-
stantiated with the sequence of type arguments T . For example, the
type of the (integer) successor function is

{ν | ν :: x :Int → {ν | tag(ν) = “Int” ∧ ν = x+ 1}},
dictionaries where the value at key “f” maps Int to Int have type

{ν | tag(ν) = “Dict” ∧ sel(ν, “f”) :: Int → Int},
and the constructed record List(1, null) can be assigned the type
{ν | ν :: List [Int ]}.

Datatype Definitions. A datatype definition ofC defines a named,
possibly recursive type. A datatype definition includes a sequence
θA of type parameters A paired with variance annotations θ. A
variance annotation is either + (covariant), - (contravariant), or =
(invariant). The rest of the definition specifies a sequence f :T of
field names and their types. The types of the fields may refer to
the type parameters of the declaration. A well-formedness check,



Operational Semantics e ↪→ e′

if δ(c, w) is defined
c w ↪→ δ(c, w)

[E-DELTA]

(λx. e) w ↪→ e[w/x] [E-APP]

let x = w in e ↪→ e[w/x] [E-LET]

(λA. e) [T ] ↪→ e [E-TAPP]

if true then e1 else e2 ↪→ e1 [E-IFTRUE]

if false then e1 else e2 ↪→ e2 [E-IFFALSE]

e1 ↪→ e′1

let x = e1 in e2 ↪→ let x = e′1 in e2
[E-COMPAT]

Figure 2. Evaluation semantics of System D

which will be described in section 4, ensures that occurrences of
type parameters in the field types respect their declared variance
annotations. By convention, we will use the subscript i to index
into the sequence θA and j for f :T . For example, θi refers to the
variance annotation of the ith type parameter, and fj refers to the
name of the jth field.

Programs. A program is a sequence of datatype definitions td
followed by an expression e. Requiring all datatype definitions to
appear first simplifies the subsequent presentation.

Semantics. The small-step operational semantics of System D is
standard for a call-by-value, polymorphic lambda calculus, and is
shown in Figure 2. Following standard practice, the semantics is
parameterized by a function δ that assigns meaning to primitive
functions c, including dictionary operations like has, get, and set.
Because expressions are A-normalized, there is a single congru-
ence rule, E-COMPAT. Our implementation desugars more palat-
able syntax into A-normal form.

4. Type Checking
In this section, we present the System D type system, comprising
several well-formedness relations, an expression typing relation,
and, at the heart of our approach, a novel subtyping relation which
discharges obligations involving nested refinements through a com-
bination of syntactic and semantic, SMT-based reasoning. We first
define environments for type checking.

Environments. Type environments Γ are of the form

Γ ::= ∅ | Γ, x :S | Γ, A | Γ, p

where bindings either record the derived type S for a variable x,
a type variable A introduced in the scope of a type function, or a
formula p that is recorded to track the control flow along branches
of an if-expression. A type definition environment Ψ records the
definition of each constructor type C. As type definitions appear at
the beginning of a program, we assume for clarity that Ψ is fixed
and globally visible, and elide it from the judgments. In the sequel,
we assume that Ψ contains at least the definition

type List [+A]{“hd”:{ν | ν :: A}; “tl”:{ν | ν :: List [A]}}.

4.1 Well-formedness
Figure 3 defines the well-formedness relations.

Well-Formed Type Schemes Γ ` S

x fresh Γ, x :Top ` p[x/ν]

Γ ` {ν | p}
Γ, A ` S

Γ ` ∀A. S

Well-Formed Formulas Γ ` p

Γ ` lw Γ ` U
Γ ` lw :: U

∀i. Γ ` lw i

Γ ` P (lw)

Γ ` p Γ ` q
Γ ` p ∧ q

Well-Formed Type Terms Γ ` U

Γ ` T1

Γ, x :T1 ` T2

Γ ` x :T1→ T2

A ∈ Γ

Γ ` A Γ ` Null

C ∈ Dom(Ψ)
∀i. Γ ` Ti

Γ ` C[T ]

Well-Formed Type Environments ` Γ

` ∅

x /∈ Dom(Γ)
` Γ Γ ` S
` Γ, x :S

` Γ
A /∈ Γ

` Γ, A

` Γ Γ ` p
` Γ, p

Well-Formed Type Definitions ` td

∀j. A ` Tj ∀i. VarianceOk(Ai, θi, T )

` type C[θA]{f :T}

Figure 3. Well-formedness for System D

Formulas, Types and Environments. We require that types be
well-formed within the current type environment, which means that
formulas used in types are boolean propositions and mention only
variables that are currently in scope. By convention, we assume that
variables used as binders throughout the program are distinct and
different from the special value variable ν, which is reserved for
types. Therefore, ν is never bound in Γ. When checking the well-
formedness of a refinement formula p, we substitute a fresh variable
x for ν and check that p[x/ν] is well-formed in the environment ex-
tended with x :Top, to the environment, where Top = {ν | true}.
We use fresh variables to prevent duplicate bindings of ν.

Note that the well-formedness of formulas does not depend
on type checking; all that is needed is the ability to syntactically
distinguish between terms and propositions. Checking that values
are well-formed is straightforward; the important point is that a
variable x may be used only if it is bound in Γ.

Datatype Definitions. To check that a datatype definition is well-
formed, we first check that the types of the fields are well-formed
in an environment containing the declared type parameters. Then,
to enable a sound subtyping rule for constructed types in the se-
quel, we check that the declared variance annotations are respected
within the type definition. For this, we use a procedure VarianceOk
(defined in a technical report [8]) that recursively walks formulas
to record whether type variables occur in positive or negative posi-
tions within the types of the fields.

4.2 Expression Typing
The expression typing judgment Γ ` e :: S, defined in Figure 4,
verifies that expression e has type scheme S in environment Γ. We
highlight the important aspects of the typing rules.



Constants. Each primitive constant c has a type, denoted by
ty(c), that is used by T-CONST. Basic values like integers, booleans,
etc. are given singleton types stating that their value equals the cor-
responding constant in the refinement logic. For example:

1 :: {ν | ν = 1} true :: {ν | ν = true}
“john” :: {ν | ν = “john”} false :: {ν | ν = false}

Arithmetic and boolean operations have types that reflect their
semantics. Equality on base values is defined in the standard way,
while equality on function values is physical equality.

+ :: x :Int → y :Int → {ν | Int(ν) ∧ ν = x+ y}
not :: x :Bool → {ν |Bool(ν) ∧ x = true⇔ ν = false}
= :: x :Top → y :Top → {ν |Bool(ν) ∧ ν = true⇔ x = y}

fix :: ∀A. (A→ A)→ A

tag :: x :Top → {ν | ν = tag(x)}

The constant fix is used to encode recursion, and the type for the
tag-test operation uses an axiomatized function in the logic.

The operations on dictionaries are given refinement types over
McCarthy’s theory of arrays extended with a default element,
which we write as bot , that is different from all program values.
The extended theory is shown to be decidable in [13].

{} :: {ν | ν = empty}
has :: d :Dict → k :Str → {ν |Bool(ν) ∧ ν = true⇔ has(d, k)}
get :: d :Dict → k :{ν |Str(ν) ∧ has(d, ν)} → {ν | ν = sel(d, k)}
set :: d :Dict → k :Str → x :Top→ {ν | ν = upd(d, k, x)}
keys :: d :Dict → List [{ν |Str(ν) ∧ has(d, ν)}]

The types above use the constant empty to denote the empty dic-
tionary, and the predicate has(d, k) to abbreviate sel(d, k) 6= bot .
To relate two dictionaries, we use EqMod(d1, d2,K) to abbreviate

∀k′. (∧k∈K k 6= k′)⇒ sel(d1, k
′) = sel(d2, k

′)

which states that the dictionaries d1 and d2 are identical except at
the keys in K. This expansion falls into the array property frag-
ment, shown to be decidable in [7] by reduction to an equisatisfi-
able quantifier-free formula. The EqMod abbreviation is particu-
larly useful for dictionary updates where we do not know the ex-
act value being stored, but do know some abstraction thereof, e.g.
its type. For example, in incCounter (from section 2) we do not
know what value is stored in the count field c, only that it is an
integer. Thus, we say that the new dictionary is the same as the old
except at c, where the binding is an integer. A more direct approach
would be to use an existentially quantified variable to represent the
stored value and say that the resulting dictionary is the original
dictionary updated to contain this quantified value. Unfortunately,
that would take the formulas outside the decidable fragment of the
logic, thereby precluding SMT-based logical subtyping.

Standard Rules. We briefly identify several typing rules that are
standard for lambda calculi with dependent refinements. T-VAR
and T-VARPOLY assign types to variable expressions x. If x is
bound to a (monomorphic) refinement type in Γ, then T-VAR as-
signs x the singleton type that says that the expression x evaluates
to the same value as the variable x. T-IF assigns the type scheme
S to an if-expression if the condition w is a boolean-valued expres-
sion, the then-branch expression e1 has type scheme S under the
assumption that w evaluates to true, and the else-branch expres-
sion e2 has type scheme S under the assumption thatw evaluates to
false. The T-APP rule is standard, but notice that the arrow type
ofw1 is nested inside a refinement type. In T-LET, the type scheme
S2 must be well-formed in Γ, which prevents the variable x from

Type Checking Γ ` e :: S

Γ ` c :: ty(c)
[T-CONST]

Γ(x) = T

Γ ` x :: {ν | ν = x} [T-VAR]
Γ(x) = ∀A. S
Γ ` x :: ∀A. S [T-VARPOLY]

Γ ` w1 :: Dict Γ ` w2 :: Str Γ ` w3 :: S

Γ ` w1 ++ {w2 7→ w3} :: {ν | ν = w1 ++ {w2 7→ w3}}
[T-EXTEND]

Γ ` w :: Bool
Γ, w = true ` e1 :: S Γ, w = false ` e2 :: S

Γ ` if w then e1 else e2 :: S
[T-IF]

Γ ` T1 Γ, x :T1 ` e :: T2

Γ ` λx. e :: {ν | ν = λx. e ∧ ν :: x :T1→ T2}
[T-FUN]

Γ ` w1 :: {ν | ν :: x :T11→ T12} Γ ` w2 :: T11

Γ ` w1 w2 :: T12[w2/x]
[T-APP]

A /∈ Γ Γ, A ` e :: S

Γ ` λA. e :: ∀A. S [T-TFUN]

Γ ` T Γ ` w :: ∀A. S
Γ ` w [T ] :: Inst(S,A, T )

[T-TAPP]

∀i. Γ ` Ti Ψ(C) = [θA]{f :T ′}
∀j. Γ ` wj :: Inst(T ′j , A, T )

Γ ` C(w) :: {ν |Fold(C, T ,w)}
[T-FOLD]

Γ ` e :: {ν | ν :: C[T ]}
Γ ` e :: {ν |Unfold(C, T )}

[T-UNFOLD]

Γ ` S1 Γ ` e1 :: S1 Γ, x :S1 ` e2 :: S2 Γ ` S2

Γ ` let x = e1 in e2 :: S2
[T-LET]

Γ ` e :: S′ Γ ` S′ v S Γ ` S
Γ ` e :: S

[T-SUB]

Figure 4. Type checking for System D

escaping its scope. T-SUB allows expression e to be used with type
S if e has type S′ and S′ is a subtype of S.

Type Instantiation. The T-TAPP rules uses the procedure Inst
to instantiate a type variable with a (monomorphic) type. Inst is
defined recursively on formulas, type terms, and types, where the
only non-trivial case involves type predicates with type variables:

Inst(lw :: A,A, {ν | p}) = p[lw/ν]

Inst(lw :: B,A, T ) = lw :: B

We write Inst(S,A, T ) to mean the result of applying Inst to S
with the type variables and type arguments in succession.

Fold and Unfold. The T-FOLD rule is used for records of data
created with the datatype constructor C and type arguments T . The
rule succeeds if the argument wj provided for each field fj has
the required type T ′j after instantiating all type parameters A with
the type arguments T . If these conditions are satisfied, the formula



Subtyping Γ ` S1 v S2

x fresh p′1 = p1[x/ν] p′2 = p2[x/ν]
Normalize(p′2) = ∧i(qi V ri) ∀i. Γ, p′1 ` qi V ri

Γ ` {ν | p1} v {ν | p2}
[S-MONO]

Γ ` S1 v S2

Γ ` ∀A. S1 v ∀A. S2
[S-POLY]

Clause Implication Γ ` q V r

Valid(JΓK ∧ q ⇒ r)

Γ ` q V r
[C-VALID]

∃j. Valid(JΓK ∧ q ⇒ lw j :: U) Γ, q ` U <: Uj

Γ ` q V ∨i lw i :: Ui
[C-IMPSYN]

Syntactic Subtyping Γ ` U1 <: U2

Γ ` T21 v T11 Γ, x :T21 ` T12 v T22

Γ ` x :T11→ T12 <: x :T21→ T22
[U-ARROW]

Γ ` A <: A
[U-VAR]

Γ ` Null <: C[T ]
[U-NULL]

Ψ(C) = [θA]{ · · · }
∀i. if θi ∈ {+, =} then Γ ` T1i v T2i

∀i. if θi ∈ {-, =} then Γ ` T2i v T1i

Γ ` C[T1] <: C[T2]
[U-DATATYPE]

Figure 5. Subtyping for System D

returned by Fold(C, T ,w), defined as

ν 6= null∧ tag(ν) = “Dict”∧ν :: C[T ]∧ (∧j sel(ν, fj) = wj)

records that the value is non-null, that the values stored in the
fields are precisely the values used to construct the record, and
that the value has a type corresponding to the specific constructor
used to create the value. T-UNFOLD exposes the fields of non-null
constructed data as a dictionary, using Unfold(C, T ), defined as

ν 6= null⇒(tag(ν) = “Dict” ∧ (∧jJT ′′j K(sel(ν, fj))))

where Ψ(C) = [θA]{f :T ′}, J{ν | p}K(lw) $ p[lw/ν], and for all
j, T ′′j = Inst(T ′j , A, T ). For example, Unfold(List , Int) is

ν 6= null⇒(tag(ν) = “Dict” ∧ tag(sel(ν, “hd”)) = “Int”

∧ sel(ν, “tl”) :: List [Int ])

4.3 Subtyping
In traditional refinement type systems, there is a two-level hierar-
chy between types and refinements that allows a syntax-directed
reduction of subtyping obligations to SMT implications [16, 23,
31]. In contrast, System D’s refinements include uninterpreted type
predicates that are beyond the scope of (first-order) SMT solvers.

Let us consider the problem of establishing the subtyping judg-
ment Γ ` {ν | p1} v {ν | p2}. We cannot use the SMT query

JΓK ∧ p1 ⇒ p2 (2)

as the presence of (uninterpreted) type-predicates may conserva-
tively render the implication invalid. Instead, our strategy is to mas-
sage the refinements into a normal form that makes it easy to factor

the implication in (2) into a collection of subgoals whose conse-
quents are either simple (non-type) predicates or type predicates.
The former can be established via SMT and the latter by recursively
invoking syntactic subtyping. Next, we show how this strategy is
realized by the rules in Figure 5.

Step 1: Split query into subgoals. We start by converting p2 into
a normalized conjunction ∧i(qi V ri). Each conjunct, or clause,
qi V ri is normalized such that its consequent is a disjunction
of type predicates. We use the symbol V instead of the usual
implication arrow ⇒ to emphasize the normal structure of each
clause. By splitting p2 into its normalized clauses, rule S-MONO
reduces the goal (2) to the equivalent collection of subgoals

∀i. Γ, p1 ` qi V ri

Step 2: Discharge subgoals. The normalization ensures that the
consequent of each subgoal above is a disjunction of type predi-
cates. When the disjunction of a clause is empty, the subgoal is

(“type predicate-free”) Γ, p1 ` qi V false

which rule C-VALID handles by SMT. Otherwise, the subgoal is

(“type predicate”) Γ, p1 ` qi V lw j :: Uj

which rule C-IMPSYN handles via type extraction followed by a
use of of syntactic subtyping. In particular, the rule tries to establish
one of the disjuncts lw j :: Uj , by searching for a type term U that
occurs in Γ that 1) flows to lw j , i.e. for which we can deduce via
SMT that

JΓK ∧ p1 ∧ qi ⇒ lw j :: U

is valid and, 2) is a syntactic subtype of Uj in an appropriately
strengthened environment (written Γ, p1, qi ` U <: Uj). The rules
U-DATATYPE and U-ARROW establish syntactic (refinement) sub-
typing, by (recursively) establishing that subtyping holds for the
matching components [6, 16, 31]. Because syntactic subtyping re-
cursively refers to subtyping, the S-MONO rule uses fresh variables
to avoid duplicate bindings of ν in the environment.

Formula Normalization. Procedure Normalize converts a for-
mula p into a conjunction of clauses ∧i(qi V ri) as described
above. The conversion is carried out by translating p to conjunctive
normal form (CNF), and then for each CNF clause, rearranging lit-
erals and adding negations as necessary. For example,

Normalize(ν = null) $ ¬(ν = null) V false

Normalize(ν = null ∨ ν :: U) $ ¬(ν = null) V ν :: U

Formula Implication. In each SMT implication query JΓK∧p⇒
q, the operator J·K describes the embedding of environments and
types into the logic as follows:

J{ν | p}K $ p JΓ, x :T K $ JΓK ∧ JT K[x/ν]
J∅K $ true JΓ, x :∀A. SK $ JΓK

JΓ, pK $ JΓK ∧ p JΓ, AK $ JΓK

When embedding values into the logic, we represent each lambda
by a distinct uninterpreted constant. Thus, function equality is
“physical equality,” so there is no concern about the equivalence
of expressions. (Note that lambdas never need to appear inside
refinement formulas in source programs, and are included in the
grammar of formulas just for the metatheory.)

Ensuring Termination. An important concern remains: as we ex-
tract type terms from the environment and recursively invoke the
subtyping relation on them, we do not have the usual guarantee that
subtyping is recursively invoked on strictly syntactically smaller
terms. Thus, it is not clear whether subtyping checks will terminate.



Indeed, if we are not careful, they may not! Consider the environ-
ment

Γ $ y : Top, x : {ν | ν = y ∧ ν :: U}
where U $ a :{ν | ν :: b :{ν | ν = y} → Top} → Top

and suppose we wish to check that

Γ ` true V y :: x :{ν | ν = y} → Top. (3)

C-VALID cannot derive this judgment, since the implication

JΓK ∧ true ⇒ y :: x :{ν | ν = y} → Top

is not valid. Thus, we must derive Equation 3 by C-IMPSYN. Type
extraction derives that y :: U in Γ, so the remaining obligation is

Γ ` U <: x :{ν | ν = y} → Top.

Because of the contravariance of function subtyping on the left-
hand side of the arrow, the following judgment must be derivable:

Γ ` {ν | ν = y} v {ν | ν :: b :{ν | ν = y} → Top}.

After SA-MONO substitutes a fresh variable, say ν′, for ν in both
types, this reduces to the clause implication obligation

Γ, ν′ = y ` true V ν′ :: b :{ν | ν = y} → Top.

Alas, this is essentially Equation 3, so we are stuck in an infinite
loop! We will again extract the type U for y (aliased to ν′ here) and
repeat the process ad inifinitum.

This situation arises only if we are allowed to invoke the rule C-
IMPSYN infinitely many times. In this case, C-IMPSYN extracts a
single type term from the environment infinitely often, since there
are only finitely many in the environment. We cut the loop with
a modest restriction: along any branch of a subtyping derivation,
we allow a type term to be extracted at most once. Since there are
only finitely many type terms in the environment, this is enough
to ensure termination. To implement this strategy, we augment the
subtyping relations to take a set of “already-used” type terms as
an additional parameter, which cannot be extracted by the rule
C-IMPSYN. To keep the presentation in this paper simpler, we
elide this restriction from the subtyping rules in Figure 5; the full
definition can be found in a technical report [8]. The versions with
and without this restriction may or may not coincide, but we are not
particularly concerned with the outcome of this question because
in our experience the kind of problematic subtyping obligation
discussed in this section is a pathological corner case that does not
arise in practice.

Recap. Recall that our goal is to typecheck programs which use
value-indexed dictionaries which may contain functions as values.
On the one hand, the theory of finite maps allows us to use logical
refinements to express and verify complex invariants about the
contents of dictionaries. On the other, without resorting to higher-
order logic, such theories cannot express that a dictionary maps a
key to a value of function type.

To resolve this tension, we introduced the novel concept of
nested refinements, where types are nested into the logic as unin-
terpreted terms and the typing relation is nested as an uninterpreted
predicate. The logical validity queries arising in typechecking are
discharged by rearranging the formula in question into an impli-
cation between a purely logical formula and a disjunction of type
predicates. This implication is discharged using a novel combina-
tion of logical queries, discharged by an SMT solver, and syntac-
tic subtyping. This approach enables the efficient, automatic type
checking of sophisticated dynamic language programs that manip-
ulate complex data, including dictionaries which map keys to func-
tion values.

5. Soundness
At this point in the proceedings, it is customary to make a claim
about the soundness of the type system by asserting that it enjoys
the standard preservation and progress properties. Unfortunately,
the presence of nested refinements means this route is unavailable
to us, as the usual substitution property does not hold! Next, we
describe why substitution is problematic and define a stratified
system System D∗ for which we establish the preservation and
progress properties. The soundness of System D follows, as it is
a special case of the stratified System D∗.

5.1 The Problems
The key insight in System D is that we can use uninterpreted
functions to nest types inside refinements, thereby unlocking the
door to expressive SMT-based reasoning for dynamic languages.
However, this very strength precludes the usual substitution lemma
upon which preservation proofs rest.

Substitution. The standard substitution property requires that if
x :S,Γ ` e :: S′ and ` w :: S, then Γ[w/x] ` e[w/x] :: S′[w/x].
The following snippet shows why System D lacks this property:

let foo f = 0 in foo (fun x -> x + 1)

Suppose that we ascribe to foo the type

foo :: f : (Int → Int)→ {ν | f :: Int → Int}.
The return type of the function states that its argument f is a func-
tion from integers to integers and does not impose any constraints
on the return value itself. To check that foo does indeed have this
type, by T-FUN, the following judgment must be derivable:

f :Int → Int ` 0 :: {ν | f :: Int → Int} (4)

By T-CONST, T-SUB, S-MONO and C-VALID the judgment re-
duces to the implication

true ∧ f :: Int → Int ∧ Jty(0)K[0/ν]⇒ f :: Int → Int .

which is trivially valid, thereby deriving (4), and showing that foo
does indeed have the ascribed type.

Next, consider the call to foo. By T-APP, the result has type

{ν | (fun x -> x + 1) :: Int → Int}.
The expression foo (fun x -> x + 1) evaluates in one step to
0. Thus, if the substitution property is to hold, 0 should also have
the above type. In other words, System D must be able to derive

` 0 :: {ν | (fun x -> x + 1) :: Int → Int}.
By T-CONST, T-SUB, S-MONO, and C-VALID, the judgment re-
duces to the implication

true ∧ Jty(0)K[0/ν]⇒ (fun x -> x + 1) :: Int → Int (5)

which is invalid as type predicates are uninterpreted in our refine-
ment logic! Thus, the call to foo and the reduced value do not have
the same type in System D, which illustrates the crux of the prob-
lem: the C-VALID rule is not closed under substitution.

Circularity. Thus, it is clear that the substitution lemma will
require that we define an interpretation for type predicates. As a
first attempt, we can define an interpretation I that interprets type
predicates involving arrows as:

I |= λx. e :: x :T1→ T2 iff x :T1 ` e :: T2.

Next, let us replace C-VALID with the following rule that restricts
the antecedent to the above interpretation:

I |= JΓK ∧ p⇒ q

Γ ` pV q
[C-VALID-INTERPRETED]



Notice that the new rule requires the implication be valid in the
particular interpretation I instead of in all interpretations. This al-
lows the logic to “hook back” into the type system to derive types
for closed lambda expressions, thereby discharging the problematic
implication query in (5). While the rule solves the problem with
substitution, it does not take us safely to the shore — it introduces
a circular dependence between the typing judgments and the inter-
pretation I. Since our refinement logic includes negation, the type
system corresponding to the set of rules outlined earlier combined
with C-VALID-INTERPRETED is not necessarily well-defined.

5.2 The Solution: Stratified System D∗

Thus, to prove soundness, we require a well-founded means of
interpreting type predicates. We achieve this by stratifying the
interpretations and type derivations, requiring that type deriva-
tions at each level refer to interpretations at the same level, and
that interpretations at each level refer to derivations at strictly
lower levels. Next, we formalize this intuition and state the im-
portant lemmas and theorems. The full proofs may be found in
a technical report [8].

Formally, we make the following changes. First, we index typ-
ing judgments (`n) and interpretations (In) with a natural number
n. We call these the level-n judgments and interpretations, respec-
tively. Second, we allow level-n judgments to use the rule

In |= JΓK ∧ p⇒ q

Γ `n pV q
[C-VALID-N]

and the level-n interpretations to use lower-level type derivations:

In |= λx. e :: x :T1→ T2 iff x :T1 `n−1 e :: T2.

Finally, we write

Γ `∗ e :: S iff ∃n. Γ `n e :: S.

The derivations in System D∗ consist of the derivations at all levels.
The following “lifting” lemma states that the derivations at each
level include the derivations at all lower levels:

Lemma (Lifting Derivations).

1. If Γ ` e :: S, then Γ `∗ e :: S.
2. If Γ `n e :: S, then Γ `n+1 e :: S.

The first clause holds since the original System D derivations
cannot use the C-VALID-N rule, i.e. Γ ` e :: S exactly when
Γ `0 e :: S. The second clause follows from the definitions of
`n and In. Stratification snaps the circularity knot and enables the
proof of the following stratified substitution lemma:

Lemma (Stratified Substitution).
If x :S,Γ `n e :: S′ and `n w :: S,
then Γ[w/x] `n+1 e[w/x] :: S′[w/x].

The proof of the above depends on the following lemma, which
captures the connection between our typing rules and the logical
interpretation of formulas in our refinement logic:

Lemma (Satisfiable Typing).
If `n w :: T , then In+1 |= JT K[w/x].

Stratified substitution enables the following preservation result:

Theorem (Stratified Preservation).
If `n e :: S, and e ↪→ e′ then `n+1 e

′ :: S.

From this, and a separate progress result, we establish the type
soundness of System D∗:

Theorem (System D∗ Type Soundness).
If `∗ e :: S, then either e is a value or e ↪→ e′ and `∗ e′ :: S.

By coupling this with Lifting, we obtain the soundness of System
D as a corollary.

6. Algorithmic Typing
Having established the expressiveness and soundness of System D,
we establish its practicality by implementing a type checker and
applying it to several interesting examples. The declarative rules
for type checking System D programs, shown in section 4, are
not syntax-directed and thus unsuitable for implementation. We
highlight the problematic rules and sketch an algorithmic version
of the type system that also performs local type inference [29]. Our
prototype implementation [8] verifies all of the examples in this
paper and in [39], using Z3 [12] to discharge SMT obligations. A
more detailed discussion of the algorithmic system may be found
in a technical report [8].

6.1 Algorithmic Subtyping
Nearly all the declarative subtyping rules presented in Figure 5 are
non-overlapping and directed by the structure of the judgment be-
ing derived. The sole exception is C-IMPSYN, whose first premise
requires us to synthesize a type term U such that the SMT solver
can prove lw j :: U for some j, where U is used in the second
premise. We note that, since type predicates are uninterpreted, the
only type terms U that can satisfy this criterion must come from
the environment Γ. Thus, we define a procedure MustFlow(Γ, T )
that uses the SMT solver to compute the set of type terms U ′, out
of all possible type terms mentioned in Γ, such that for all values
x, x :T implies that x :: U ′. To implement C-IMPSYN, we call
MustFlow(Γ, {ν | ν = lw j}) to compute the set U of type terms
that might be needed by the second premise. Since the declarative
rule cannot possibly refer to a type term U not in Γ, this strategy
guarantees that U ∈ U and, thus, does not forfeit precision.

6.2 Bidirectional Type Checking
We extend the syntax of System D with optional type annotations
for binding constructs and constructed data, and, following work on
local type inference [29], we define a bidirectional type checking
algorithm. In the remainder of this section, we highlight the novel
aspects of our bidirectional type system.

Function Applications. To typecheck an application w1 w2, we
must synthesize a type T1 for the function w1 and use type ex-
traction to convert T1 to a syntactic arrow. Since the procedure
MustFlow can return an arbitrary number of type terms, we must
decide how to proceed in the event that T1 can be extracted to mul-
tiple different arrow types. To avoid the need for backtracking in
the type checker, and to provide a semantics that is simple for the
programmer, we synthesize a type for w1 only if there is exactly
one syntactic arrow that is applicable to the given argument w2.

Remaining Rules. We will now briefly summarize some of the
other algorithmic rules presented in a technical report [8]. Uses of
T-SUB can be factored into other typing rules. However, uses of
T-UNFOLD cannot, since we cannot syntactically predict where
it is needed. Since we do not have pattern matching to determine
exactly when to unfold type definitions, as in languages like ML,
we eagerly unfold type definitions to anticipate all situations in
which unfolding might be required. For let-expressions, to handle
the fact that synthesized types might refer to variables that are
about to go out of scope, making them ill-formed, we use several
simple heuristics to eliminate occurrences of local variables. In all
of the examples we have tested, the annotations provided on top-
level let-bindings are sufficient to allow synthesizing well-formed
types for all unannotated inner let-expressions. Precise types are
synthesized for if-expressions by synthesizing the types of both



branches, guarding them by the appropriate branch conditions, and
conjoining them. For constructed data expressions, we allow the
programmer to provide hints in type definitions that help the type
checker decide how to infer type parameters that are omitted. For
example, suppose the List definition is updated as follows:

type List [+A]{“hd”:{ν | ν :: A}; “tl”:{ν | ν :: List [∗A]}}
Due to the presence of the marker ∗ in the type of the “tl” field,
local type inference will use the type ofw2 to infer the omitted type
parameter in List(w1, w2). Finally, although the techniques in [29]
would allow us to, for simplicity we do not attempt to synthesize
parameters to type functions.

Soundness. We write Γ ` e C S for the algorithmic type check-
ing judgment, which verifies e against the given type S, and Γ `
e B S for the algorithmic type synthesis judgment, which pro-
duces a type S for expression e. Each of the techniques employed
in this section are sound with respect to the declarative system, so
we can show the following property, where we use a procedure
erase to remove type annotations from functions, let-bindings, and
constructed data because the syntax of the declarative system does
not permit them:

Proposition (Sound Algorithmic Typing).
If Γ ` e B S or Γ ` e C S, then Γ ` erase(e) :: S.

7. Related Work
In this section, we highlight related approaches to statically verify-
ing features of dynamic languages. For a thorough introduction to
contract-based and other hybrid approaches, see [15, 23, 34].

Dynamic Unions and Control Flow. Among the earliest attempts
at mixing static and dynamic typing was adding the special type
dynamic to a statically-typed language like ML [1]. In this ap-
proach, an arbitrary value can be injected into dynamic, and a
typecase construct allows inspecting its precise type at run-time.
However, one cannot guarantee that a particular dynamic value is
of one of a subset of types (cf. negate from section 2). Several
researchers have used union types and tag-test sensitive control-
flow analyses to support such idioms. Most recently, λTR [39] and
λS [18] feature values of (untagged) union types that can be used
at more precise types based on control flow. In the former, each ex-
pression is assigned two propositional formulas that hold when the
expression evaluates to either true or false; these propositions are
strengthened by recording the guard of an if-expression in the typ-
ing environment when typing its branches. Typechecking proceeds
by solving propositional constraints to compute, for each value at
each program point, the set of tags it may correspond to. The latter
shows how a similar strategy can be developed in an imperative set-
ting, by coupling a type system with a data flow analysis. However,
both systems are limited to ad-hoc unions over basic and function
values. In contrast, System D shows how, by pushing all the infor-
mation about the value (resp. reasoning about flow) into expressive,
but decidable refinement predicates (resp. into SMT solvers), one
can statically reason about significantly richer idioms (related tags,
dynamic dictionaries, polymorphism, etc.).

Records and Objects. There is a large body of work on type
systems for objects [22, 28]. Several early advances incorporate
records into ML [30], but the use of records in these systems is un-
fortunately unlikely to be flexible enough for dynamic dictionaries.
In particular, record types cannot be joined when they disagree on
the type of a common field, which is crucially enabled by the use of
the theory of finite maps in our setting. Recent work includes type
systems for JavaScript and Ruby. [3] presents a rich type system
and inference algorithm for JavaScript, which uses row-types and
width subtyping to model dictionaries (objects). The system does

not support unions, and uses fixed field names. This issue is ad-
dressed in [38], which models dictionaries using row types labeled
by singletons indexed by string constants, and depth subtyping.
A recent proposal [41] incorporates an initialization phase during
which object types can be updated. However, these systems pre-
clude truly dynamic dictionaries, which require dependent types,
and moreover lack the control flow analysis required to support
ad-hoc unions. DRuby [17] is a powerful type system designed to
support Ruby code that mixes intersections, unions, classes, and
parametric polymorphism. DRuby supports “duck typing,” by con-
verting from nominal to structural types appropriately. However, it
does not support ad-hoc unions or dynamic dictionary accesses.

Dependent Types for First-Order Programs. The observation
that ad-hoc unions can be checked via dependent types is not new.
[24] develops a dependent type system called guarded types that is
used to describe records and ad-hoc unions in legacy Cobol pro-
grams that make extensive use of tag-tests, where the “tag” is sim-
ply the first few bytes of a structure. [21] presents an SMT-based
system for statically inferring dependent types that verify the safety
of ad-hoc unions in legacy C programs. [10] describes how type-
checking and property verification are two sides of the same coin
for C (which is essentially uni-typed.) It develops a precise logic-
based type system for C and shows how SMT solvers can be used
for type-checking. This system contains a hastype(x,T) which is
similar to ours except that T ranges over a fixed set of type constants
as opposed to arbitrary types. Thus, one cannot use their hastype
to talk about complex values (e.g. dependent functions, duck-typed
records with only some fields) nested within dictionaries in their
system. Finally, the system supports function pointers but does not
fully support higher-order functions. Dminor [6] uses refinement
types to formalize similar ideas in a first-order functional data de-
scription language with fixed-key records and run-time tag-tests.
The authors show how unions and intersections can be expressed
in refinements (and even collections, via recursive functions), and
hence how SMT solvers can wholly discharge all subtyping obli-
gations. However, the above techniques apply only to first-order
languages, with static keys and dictionaries over base values.

Refinement Types for Higher-Order Programs. The key novelty
of System D is the introduction of nested refinement types, which
are a generalization of the refinement types introduced by the long
line of work pioneered by Xi and Pfenning [40] and further stud-
ied in [4, 11, 14, 23, 31, 35]. The main difficulty in applying these
classical refinement type systems to dynamic languages is that they
require a distinction between base values that are typed with refine-
ment predicates and complex values that are typed with syntactic
constructors. In particular, dynamic languages contain dependent
dictionaries, which require refinements (over the theory of arrays)
to describe keys but syntactic types to describe the values bound to
keys. This combination is impossible with earlier refinement types
systems but is enabled by nesting types within refinements.

Combining Decision Procedures. Our approach of combining
logical reasoning by SMT solvers and syntactic reasoning by sub-
typing is reminiscent of work on combining decision procedures
[26, 33]. However, such techniques require the theories being com-
bined to be disjoint; since our logic includes type terms which
themselves contain arbitrary terms, our theory of syntactic types
cannot be separated from the other theories in our system, so these
techniques cannot be directly applied.

8. Conclusions and Future Work
We have shown how, by nesting type predicates within refinement
formulas and carefully interleaving syntactic- and SMT-based sub-
typing, System D can statically type check dynamic programs that



manipulate dictionaries, polymorphic higher-order functions and
containers. Thus, we believe that System D can be a foundation
for two distinct avenues of research: the addition of heterogeneous
dictionaries to static languages like C#, Java, OCaml and Haskell,
or dually, the addition of expressive static typing to dynamic lan-
guages like Clojure, JavaScript, Racket, and Ruby.

We anticipate several concrete lines of work that are needed to
realize the above goals. First, we need to add support for references
and imperative update, features common to most popular dynamic
languages. Since every dictionary operation in an imperative lan-
guage goes through a reference, we will need to extend the type
system with flow-sensitive analyses, as in [32] and [18], to precisely
track the values stored in reference cells at each program point. Fur-
thermore, to precisely track updates to dictionaries in the impera-
tive setting, we will likely need to introduce some flow-sensitivity
to the type system itself, adopting strong update techniques as in
[19] and [41]. Second, our system treats strings as atomic constants.
Instead, it should be possible to incorporate modern decision proce-
dures for strings [20] to support logical operations on keys, which
would give even more precise support for reflective metaprogram-
ming. Third, we plan to extend our local inference techniques to au-
tomatically derive polymorphic instantiations [29] and use Liquid
Types [31] to globally infer refinement types. Finally, for dynamic
languages, it would be useful to incorporate some form of staged
analysis to support dynamic code generation [2, 9].

Acknowledgements. The authors wish to thank Jeff Foster, Ming
Kawaguchi, Sorin Lerner, Todd Millstein, Zachary Tatlock, David
Walker, and the anonymous reviewers for their detailed feedback
on drafts of this paper.

References
[1] M. Abadi, L. Cardelli, B. C. Pierce, and G. Plotkin. Dynamic typing

in a statically-typed language. In POPL, 1989.
[2] J.-h. D. An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic

inference of static types for ruby. In POPL, 2011.
[3] C. Anderson, S. Drossopoulou, and P. Giannini. Towards Type Infer-

ence for JavaScript. In ECOOP, pages 428–452, June 2005.
[4] J. Bengtson, K. Bhargavan, C. Fournet, A. Gordon, and S. Maffeis.

Refinement types for secure implementations. In CSF, 2008.
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