
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Liquid Types

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Patrick Rondon

Committee in charge:

Professor Ranjit Jhala, Chair
Professor Samuel R. Buss
Professor Sorin Lerner
Professor Jens Palsberg
Professor Geoffrey Voelker

2012

Copyright
Patrick Rondon, 2012

All rights reserved.

The dissertation of Patrick Rondon is approved, and it is
acceptable in quality and form for publication on micro-
film and electronically:

Chair

University of California, San Diego

2012

iii

DEDICATION

For Mom, Dad, and Claudia.

iv

EPIGRAPH

Given the pace of technology, I propose we leave math to the machines and go play outside.

— Calvin

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Toward Automated Program Verification 2
1.2 Quantified Reasoning with Refinement Types 5
1.3 Liquid Types: A Method for Refinement Type Inference 7
1.4 Other Approaches to Refinement Type Inference 8
1.5 Low-Level Liquid Types . 8
1.6 Related Approaches to Verifying Low-Level Programs 11
1.7 Contributions . 14

Chapter 2 Liquid Types . 15
2.1 Overview . 15

2.1.1 Refinement Types and Qualifiers 15
2.1.2 Liquid Type Inference by Example 16

2.2 The λL Language and Type System . 22
2.2.1 Elements of λL . 22
2.2.2 Liquid Type Checking Rules . 25
2.2.3 Features of the Liquid Type System 27

2.3 Liquid Type Inference . 29
2.3.1 ML Types and Templates . 30
2.3.2 Constraint Generation . 31
2.3.3 Constraint Solving . 34
2.3.4 Features of Liquid Type Inference 37

2.4 Implementation and Evaluation . 38
2.4.1 DSOLVE: Liquid Types for OCaml 38
2.4.2 Benchmark Results . 39

Chapter 3 Low-Level Liquid Types . 43
3.1 Overview . 45

3.1.1 Physical and Refinement Types and Heaps 45
3.1.2 Low-Level Liquid Types By Example 46

3.2 The NANOC Language and Type System 53
3.2.1 Syntax . 53
3.2.2 Types . 55

vi

3.2.3 Typing Rules . 58
3.3 Data Structure Verification with Final Fields 69

3.3.1 Final Fields Example: Memory Allocation 70
3.3.2 Linked Structure Invariants . 72
3.3.3 Formal Changes to the NANOC Type System 75

3.4 Type Inference . 79
3.4.1 Physical Type Inference . 80
3.4.2 Fold and Unfold Inference . 80
3.4.3 Final Field Inference . 81
3.4.4 Refinement Inference . 81

3.5 Implementation and Evaluation . 82
3.5.1 CSOLVE: Liquid Types for C . 82
3.5.2 Memory Safety Benchmarks . 83
3.5.3 Data Structure Benchmarks . 87

Chapter 4 Conclusions and Future Work . 89
4.1 Polymorphism . 89
4.2 Flow-Sensitive Invariants . 90
4.3 Liquid Types for Dynamic Languages 91

Bibliography . 92

Appendix A Correctness of Liquid Type Inference . 99

Appendix B Dynamic Semantics of NANOC . 118

Appendix C Soundness of NANOC Type Checking . 123

vii

LIST OF FIGURES

Figure 2.1: Example OCaml Program . 17
Figure 2.2: Syntax of λL expressions and types . 23
Figure 2.3: Rules for Liquid Type Well-Formedness . 25
Figure 2.4: Rules for Liquid Type Checking . 26
Figure 2.5: Constraint Generation from λL Programs . 31
Figure 2.6: Liquid Type Inference Algorithm . 32

Figure 3.1: Example: make string . 47
Figure 3.2: Example: new string . 48
Figure 3.3: Example: new strings . 49
Figure 3.4: Syntax of NANOC programs . 54
Figure 3.5: Syntax of NANOC types . 56
Figure 3.6: Well-formedness rules for NANOC . 59
Figure 3.7: Subtyping rules for NANOC . 61
Figure 3.8: Subindex relation . 62
Figure 3.9: Typing rules for pure NANOC expressions . 63
Figure 3.10: Index arithmetic operators . 64
Figure 3.11: Typing rules for standard NANOC expressions 65
Figure 3.12: Typing rules for NANOC heap reads and writes 66
Figure 3.13: Non-standard typing rules for NANOC expressions 67
Figure 3.14: Program Typing . 69
Figure 3.15: Final fields example: memory management 71
Figure 3.16: Additions to NANOC types to support final fields 76
Figure 3.17: Determining well-formedness of refinement predicates 76
Figure 3.18: Rules for well-formedness of NANOC types with final fields 77
Figure 3.19: Rules for type checking NANOC expressions with final fields 78

Figure B.1: Small-step semantics of pure NANOC expressions 119
Figure B.2: Small-step semantics of effectful NANOC expressions 121
Figure B.3: Small-step semantics of NANOC programs . 122

Figure C.1: Updated reference values and semantics for NANOC 128
Figure C.2: Updated typing rules for NANOC expressions 133

viii

LIST OF TABLES

Table 2.1: Liquid Types Benchmark Results . 40

Table 3.1: Low-Level Liquid Types Benchmark Results 85

ix

ACKNOWLEDGEMENTS

I owe a huge thanks to my advisor, Ranjit Jhala, for all the generous and patient guidance

and support as well as the insight, inspiration, good humor, and, of course, food and coffee he’s

provided over the years.

Thanks to my committee members Sorin Lerner, Sam Buss, Geoff Voelker and Jens

Palsberg for showing a keen interest in the work and firming up my efforts with their questions

and insights.

I feel very fortunate to have spent the last few years with the incredibly talented and

driven UCSD programming languages group. Thanks to all of you for hearing out my half-baked

ideas, reading my half-written drafts, and sitting through my half-cocked talks; the other halves

were always so much better for your input. Particular thanks are due to Sorin Lerner, who was

always ready to dole out advice or lend an ear as needed.

I’ve been especially lucky to have Ming Kawaguchi, Ravi Chugh, and Alexander Bakst

as collaborators and friends. Trying to keep up with them has always pushed me to go further

and faster. Among non-collaborators, I owe particular thanks to Ross Tate and Zach Tatlock, who

have been great friends and good or bad influences as appropriate (or inappropriate).

I’m lucky to have made a large number of friends at UCSD who have changed my life

for the better in countless ways. I won’t attempt an exhaustive list, for fear of missing someone

or running out of pages; you know who you are. Thanks for everything!

I’m grateful for the lifelong support and encouragement of my “generalized parents”:

thanks, Mom, Dad, Uncle Ronnie, Tom, and Norah, for keeping me going. Thanks to Joseph,

Vanessa, Aprille, Frank, Ryan, and Evan; if I turned out OK, it’s largely because I grew up in

such good company.

Finally, much of the credit for the actual completion of this work belongs to my wife and

constant coffee shop companion, Claudia, who made the bad days bearable and the good days

outstanding.

Published Works Adapted in This Dissertation

Chapter 2 contains material adapted from the following publications:

Patrick Rondon, Ming Kawaguchi, Ranjit Jhala. “Liquid Types”, Proceedings of the 2008

ACM SIGPLAN conference on Programming Language Design and Implementation (PLDI), pages

159–169, 2008.

Ming Kawaguchi, Patrick Rondon, Ranjit Jhala. “DSolve: Safety Verification via Liquid

Types”, Proceedings of Computer Aided Verification 2010 (CAV), pages 123–126, 2010.

The dissertation author was principal investigator on both publications.

Chapter 3 contains material adapted from the following publications:

x

Patrick Rondon, Ming Kawaguchi, Ranjit Jhala. “Low-Level Liquid Types”, Proceedings of

the 2010 ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),

pages 131–144, 2010.

Patrick Rondon, Alexander Bakst, Ming Kawaguchi, Ranjit Jhala. “CSolve: Verifying C

with Liquid Types”, Proceedings of Computer Aided Verification 2012 (CAV), pages 744–750,

2012.

The dissertation author was principal investigator on both publications.

xi

VITA

2006 B. S. in Computer Science, Pennsylvania State University

2009 M. S. in Computer Science, University of California, San Diego

2012 Ph. D. in Computer Science, University of California, San Diego

PUBLICATIONS

Patrick Rondon, Ming Kawaguchi, Ranjit Jhala, “Liquid Types”, Programming Language Design
and Implementation, 2008.

Ming Kawaguchi, Patrick Rondon, Ranjit Jhala, “Type-Based Data Structure Verification”, Pro-
gramming Language Design and Implementation, 2009.

Patrick Rondon, Ming Kawaguchi, Ranjit Jhala, “Low-Level Liquid Types”, Principles of Program-
ming Languages, 2010.

Ming Kawaguchi, Patrick Rondon, Ranjit Jhala, “DSolve: Verification via Liquid Types”, Computer-
Aided Verification, 2010.

Ravi Chugh, Patrick Rondon, Ranjit Jhala, “Nested Refinements: A Logic for Duck Typing”,
Principles of Programming Languages, 2012.

Ming Kawaguchi, Patrick Rondon, Alexander Bakst, Ranjit Jhala, “Deterministic Parallelism with
Liquid Effects”, Programming Language Design and Implementation, 2012.

Patrick Rondon, Alexander Bakst, Ming Kawaguchi, Ranjit Jhala, “CSolve: Low-Level Program
Verification via Liquid Types”, Computer-Aided Verification, 2012.

xii

ABSTRACT OF THE DISSERTATION

Liquid Types

by

Patrick Rondon

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Ranjit Jhala, Chair

Because of our increasing dependence on software in every aspect of our lives, it is

crucial that our software systems are reliable, safe, and correct — they must not crash, must be

safe from attack, and must consistently compute the results we expect from them. As testing

is insufficient to show the absence of errors and manual code review is tedious, costly, and

error-prone, the only clear path to efficiently and reliably ensuring software quality is to develop

automatic verification tools which require as little intervention from the programmer as possible.

In this dissertation, we present Liquid Types, an automated approach to software ver-

ification based on inferring and checking expressive refinement types, data types which are

augmented with logical predicates, which can be used to express and verify sophisticated pro-

gram invariants. We show how Liquid Types divides the task of program verification between

type-based and logic-based reasoning to infer precise invariants of unboundedly-large data

structures. Further, we show how the Liquid Types technique is suited both to high-level, pure

functional languages and low-level, imperative languages with mutable state, allowing for the

verification of programmings running the full range from applications to systems programs.

xiii

The Liquid Types technique has been implemented in type checkers for both the OCaml

and C languages and applied to a number of challenging programs taken from the literature and

from the wild. We highlight experimental results that show that the refinement type inference

performed by Liquid Types can be used to verify crucial safety properties of real-world programs

without imposing an undue verification-related overhead on the programmer.

xiv

Chapter 1

Introduction

In spite of advances in language design, development environments, run-time support,

software engineering practices, and verification technology, the task of writing correct, reliable

software remains tremendously difficult: it is still distressingly common for newly-developed

programs to be susceptible to crashes, misbehaviors, and security vulnerabilities.

What makes writing reliable programs difficult, in spite of our decades of experience

in the craft, is that it is both exacting and abstract. Programming is exacting in the sense that

every detail of a program matters in determining how it will execute. Even the tiniest error — for

example, reading one too many characters from an untrusted source into a buffer — can have

catastrophic consequences — for example, complete takeover of a user’s computer. Reasoning

about all possible sources of errors requires programmers to be infallible experts on the semantics

of their languages, libraries, and run-time environments.

Yet many factors influencing the behavior of a program are unknown until run-time. For

example, we do not know until run time how threads will be scheduled or what inputs the user

will provide. Programs that manipulate unboundedly-large data structures like linked lists also

have infinite state spaces, making it impossible to reason about every concrete program state.

(Of course, even a finite state space is typically far too large to admit case-by-case analysis, even

using automated techniques.) Thus, programming is not just exacting, but also abstract, in that

the programmer must use not concrete program states, but rather sets of possible program states,

in reasoning about their programs.

In order to write correct and reliable programs, then, programmers are expected to have

a flawless understanding of the semantics of their programming environments and complete

omniscience with respect to the kinds of inputs their programs will receive and environments in

which they will run. In order to safely maintain, extend, and update their programs, programmers

must be able to carry out this reasoning not only flawlessly, but do so repeatedly and quickly.

It is highly unrealistic to expect that fallible human programmers can reliably carry out such

1

2

detailed reasoning once, much less repeatedly and at a pace consistent with our demand for new

and updated software, as people are incredibly ill-suited to such detailed reasoning.

The inescapable conclusion is that, if we wish to establish that our programs are correct

and reliable, and we wish to ensure that they remain so as we upgrade and extend them, we

must do so by automated means. Any tool for ensuring program quality must satisfy several

criteria. First, it must be low-overhead: the cost of using the tool, in terms of programmer time

invested in interacting with and understanding the tool, must be low, so that there is a net benefit

to its use as compared with by-hand reasoning. Second, it must be precise: the tool should not

give too many false positives, signaling to the programmer that their code is incorrect when in

fact there is no error, again so that the overhead of sorting the wheat from the chaff does not

negate the benefits of using the tool. Third, the tool should be expressive: the tool should be

able to express and check a wide variety of program properties. In particular, to verify realistic

programs, the tool must be able to reason precisely about the contents of unboundedly-large data

structures like lists, arrays, and hash tables, which are ubiquitous in real-world programs.

1.1 Toward Automated Program Verification

Our criteria point us toward precise automated program verification tools which analyze

programs and determine, with a limited amount of user intervention, whether they satisfy the

desired criteria. Broadly, such tools work by automatically exploring the space of reachable

program states and ensuring that any program state where a desired invariant is broken — for

example, where an array index is out of bounds — is unreachable, thus verifying the absence

of the error. Specific approaches to exploring the state space vary, but generally fall into the

categories of model checking [16] and abstract interpretation [24]. (We consider type checking as

a special case of abstract interpretation, and defer further discussion of type checking until

later.) In model checking, the program’s state space is explored systematically, beginning with

the initial state and following all possible execution paths until all reachable states have been

discovered or an error state is reached. This naı̈ve approach to model checking is only applicable

to programs that have finite state spaces; if the program manipulates unboundedly-large data

structures like linked lists and trees, the set of possible program states will be infinite, and

the state space exploration may not terminate. Thus, to effectively model check infinite-state

programs, one generates an abstraction of the state space that breaks the infinite state space into

subsets represented by a finite number of abstract representatives. One can then model check a

corresponding finite-state abstract program which simulates the original program but operates

on abstract, rather than concrete, states. The abstract interpretation approach is similar, but

differs in the details: we take as our abstract state space a complete lattice whose elements are

the abstract states. The concrete program statements are mapped to corresponding, monotone

abstract transformers over the abstract state space. The program is executed with respect

3

to this abstract domain by evaluating the composition of the program’s constituent abstract

transformers to a fixed point; this is analogous to executing the abstract program in the model

checking approach until all reachable states are discovered. Given a finite-height lattice, then, it’s

possible to use abstract interpretation to compute program invariants in a finite amount of time.

In both approaches, after interpreting the program over the abstract state space, we check that no

undesirable abstract states can be reached.

We note that the model checking and abstract interpretation approaches are more alike

than they are different, and their central concerns are the same. First, we wish to construct an

abstract domain which is precise in the following two senses: first, it is expressive enough to

prove interesting program invariants, and second, it avoids using the same abstract state to

represent both undesirable concrete program states and legitimate, valid program states which

cause no trouble at runtime; doing so could result in a high number of “false alarms” where safe

programs are erroneously reported as unsafe. Second, the operations on the abstract domain that

we require to perform the analysis must be efficiently implementable, so that the analysis has

reasonable performance. In particular, we must be able to efficiently decide inclusion between

two abstract program states, in order to determine whether a given abstract program state

includes an undesirable state, and, in the case of abstract interpretation, we must be able to

efficiently compute a an abstract overapproximation of two abstract program states.

We thus note that an abstract domain is an enhanced logic of abstract program states:

concrete and abstract program states are related by a modeling relation which determines which

concrete states belong to a given abstract state; an entailment relation tells us when a model

of one abstract state is also a model of another; and (most of) the operations on abstract states

correspond to a proof theory in the logic of program states. Intuitively, it would seem that a

natural choice for a logic of program states is first-order logic, augmented with theories suitable

for program verification; indeed, the earliest work in manual program verification, based on

Floyd-Hoare logic [39, 48, 29], represented program states using formulas of first-order logic.

Representing program states with first-order logic comes with a considerable advantage: the

availability of fast Satisfiability Modulo Theories (SMT) solvers for first-order logical formulas,

which incorporate fast reasoning about such quantifier-free theories as arrays, integer linear

arithmetic, and uninterpreted functions, makes it possible to automatically and efficiently reason

about sophisticated quantifier-free first-order order facts about program states. Tools built on

SMT technology automatically benefit from advances in the area, which incorporates SAT solving,

theory-specific reasoning, and combination procedures for reasoning about facts which combine

elements from several theories.

Unfortunately, unrestricted first-order logic suffers two problems that make it a poor

choice for representing abstract states in an automated program verifier. First, unrestricted first-

order logic is simultaneously not expressive enough to verify realistic programs with unbounded

data structures and too expressive to be efficiently decidable. Second, first-order logic by itself

4

does not provide any sort of abstraction; the ability to precisely express arbitrary program states

means that the set of abstract program states expressible in first-order logic simply subsumes the

set of concrete program states. We review approaches to expressiveness and state abstraction in

turn, then describe approaches to balancing abstraction and expressiveness.

A number of approaches have been developed to create logics which have better decid-

ability or expressiveness properties than first-order logic. Logics which include transitive closure

or reachability predicates have been developed for coping with linked data structures; a principal

concern in the design of such logics is imposing sufficient restrictions on the allowed formulas

so that validity remains decidable, ensuring that programmers do not need to provide explicit

proofs, or providing semi-decision procedures which are sufficient for practical use. Examples

of logics of this type include the Pointer Assertion Logic Engine [66] and the reachability logics

of Chatterjee et al. [13] and Lahiri and Qadeer [59]. A related system is McPeak and Necula’s

logic based on local equality axioms [63], which provides a decision procedure for shape (rather

than data) properties that constrain a fixed-size region around heap nodes. On the other hand, a

number of higher-order logics have been developed for reasoning about programs, and corre-

sponding verifiers have been developed. Example of systems of this type include NuPRL [21]

and Coq [8], which support the development and verification of higher-order, pure functional

programs; a number of systems have extended or incorporated these logics to accommodate

writing and verifying imperative programs, among them Ynot, based on Hoare Type Theory [67],

Bedrock [14], and Jahob [87]. Logical validity checking in such systems is undecidable, so that

such systems approach automatic validity checking on a “best-effort” basis: both built-in and

user-provided tactics are used to attempt to discharge proof obligations, with the user ultimately

responsible for manually proving any obligations which the tactics are unable to discharge. As

with first-order logic, we note that the logics discussed above do not inherently provide any sort

of finite program state abstraction; these logics may satisfy our precision and expressiveness

requirements, but do not themselves help with automating the verification process.

On the other hand, a number of abstract domains have been developed for automatic

program analysis, based both on specialized state representations and on full first-order logic.

These include a number of abstract domains specialized to properties of integer values, among

them intervals [22], octagons [65], and polyhedra [25]. A number of abstract domains have also

been developed for inferring shape, rather than data, properties of linked data structures. Much

work in this area has focused on three-valued logic analysis [62] or separation logic [74, 49] (for

example, [30, 86]); in the case of separation logic, the abstract domains are typically tailored to

the particular data structures being analyzed, e.g., singly- or doubly-linked lists. In the same

vein, a number of abstract domains have been developed for analyzing data-sensitive properties

of specific data structures, among them arrays [42, 23] and singly-linked lists [10]. Such abstract

domains tend to be efficient and expressive within their application domains, but these gains

come at the cost of generality, trading expressiveness for efficiency.

5

The predicate abstraction domain [43] retains the full expressiveness of first-order logic

and most of the automation of more specialized abstract domains. Elements of the predicate

abstraction domain are Boolean combinations of user-provided first-order predicates. Thus, the

domain is finite, but, in the limit, the expressiveness of the domain is the same as first-order logic,

as the user may provide arbitrary predicates. Automation is still quite high because the user needs

only to provide a set of relatively small predicates from which sophisticated program invariants

can be constructed; further, sets of such predicates sufficient for performing verification can be

often be guessed based on the syntax of the program and types of its identifiers, as in the Houdini

annotation assistant [36]. Predicate abstraction forms the foundation of a number of successful

automated program verification tools, among them SLAM [5], BLAST [47], MAGIC [12], and

ESC/Java [37].

However, in spite of its advantages, predicate abstraction over first-order logic formulas

suffers the same expressiveness and decidability limitations as first-order logic, and introduces

new limitations of its own: in addition to the problems of deciding the validity of first-order

formulas and the need for additional logical primitives to express invariants over linked struc-

tures, the user needs to explicitly provide any quantified facts in full as input predicates —

predicate abstraction alone will not insert quantifiers where appropriate: for example, given a

predicate stating that a value is nonzero, predicate abstraction-based techniques cannot infer that

all elements of an array are nonzero without the user explicitly providing the entire quantified

fact. Indexed predicate abstraction [37, 58] solves the latter problem by allowing the user to write

predicates over both program variables and index variables, which will be quantified over when

constructing predicates describing program states. A more sophisticated approach proposed by

Srivastava and Gulwani [77] takes from the user both a set of predicates and a set of templates

which contain variables ranging over conjunctions of the predicates; the user specifies the Boolean

structure of the inferred invariants, including any desired quantifiers, as part of the template.

Unfortunately, such approaches still leave the user with the burden of either deciding which

variables within a given predicate should be quantified or deciding on the quantified structure of

the invariants that should be inferred, and do not address the problems of automatically deciding

the validity of universally-quantified facts.

1.2 Quantified Reasoning with Refinement Types

We now turn to a more restrictive abstract domain which supports efficient reasoning

with quantified facts about unbounded data structures: types. In a type system, simple (non-

compound) program values are classified according to their types, for example, int for integer

values and bool for Boolean values. Complex data values, like lists of values of a particular type

of value, are described with type constructors, which are simply functions from types to types:

for example, the type constructor list can be applied to the type int to yield the type int list,

6

the type of a list whose elements are all integers; note that this type compactly represents a

universally-quantified fact about the elements of a list, that all of its elements are integers.

The syntaxes of both programs and types guide reasoning about such universally-quantified

facts: an int list is only constructed by creating a new empty list or by applying the cons

data constructor to a pair of an int value and an int list value; similarly, deconstructing an

int list value into its components must always yield either an empty list or a pair of an int

and an int list; and two program values have the same type only when all the components of

their types are the same. Thus, types efficiently guide us in reasoning about quantified facts: in

particular, they provide efficient syntax-directed methods for generalizing facts about individual

data items to facts about entire data structures, for instantiating facts about data structures into

facts about individual elements, and for deciding inclusion between abstract program states.

However, simple types like int list are not sufficiently expressive for the majority of

program verification tasks. For example, such type systems are unable to express important

program invariants like the fact that an integer value is nonzero or within the bounds of some

array. To address this shortcoming, prior work has developed a number of refinement type

systems [41, 27, 71], which enhance conventional types with formulas that allow for precise

reasoning about data values. A refinement type is formed by combining a conventional type,

like int or bool, with a logical predicate that further restricts the values that belong to the type.

For example, the refinement type

{ν : int | ν 6= 0}

combines the base type int with the predicate ν 6= 0. The special value variable, ν, is used to

indicate the value which is described by this type; the refinement predicate ν 6= 0 specifies that

all values that have this type must be nonzero, so that the refinement type above specifies the

set of nonzero integer values. Quantified reasoning with refinement types proceeds similarly

to ordinary data types. The strategies for generalizing and instantiating universally-quantified

data structure facts remain the same. To show that one quantified fact, expressed as a refinement

type, implies another, we simply check pairwise implication between the components of the

type. For example, we determine that the property of being a list of positive integers implies

the property of being a list of list of nonzero integers, we simply check that the type of lists of

positive integers,

{ν : int | ν > 0} list,

is included in the type of lists of nonzero integers,

{ν : int | ν 6= 0} list,

by verifying that ν > 0 implies ν 6= 0. Thus, refinement type checking reduces checking implica-

tions between universally-quantified facts about data structures, expressed as refinement types,

to checking implications between quantifier-free formulas; such checks are easily discharged by

off-the-shelf SMT solvers.

7

Refinement types have been shown to be broadly applicable and highly expressive

program verification tools. Xi and Pfenning [83, 84] show that refinement types can be used

to show the absence of array bounds violations in a number of higher-order ML programs.

Dunfield [32] shows that refinement types can be used to verify the correctness of data structure

implementations; he shows, for example, that an implementation of red-black tree operations

maintains the required color invariant. Bengtson et al. [7] use refinement types to show the

correctness of cryptographic protocol implementations. In each of the above, the verification

was done by manually annotating each function in the program with refinement types, with

annotation burdens of upwards of 10% of the total lines of source code. To make verification

with refinement types practical, we will have to lower this burden considerably.

1.3 Liquid Types: A Method for Refinement Type Inference

Our key insight is that we can combine the quantified reasoning machinery of refine-

ment type checking with the invariant inference machinery of predicate abstraction to yield an

algorithm for refinement type inference, which will allow us to significantly lower the annotation

burden associated with refinement type-based verification. We define a class of refinement types,

called liquid types, whose refinement predicates are restricted to be conjunctions of instances of

user-provided predicate templates. We then perform refinement type inference in three phases.

First, we infer conventional data types like int and bool for each program expression. We then

assign each inferred type a refinement predicate variable representing an unknown refinement

predicate, and use the structure of the program and its inferred types to generate a set of logical

constraints on the refinement predicate variables. We apply a fixed point procedure to solve for

the refinement predicate variables as conjunctions of instances of the user-provided predicate

templates such that, if a solution is found, replacing each refinement predicate variable with its

solution yields a refinement typing for the program.

The resulting abstract domain neatly divides the invariant inference task between type-

based and logic-based reasoning. Facts about values of base type are expressed by simple,

quantifier-free formulas. These facts about individual data items are lifted to quantified facts over

entire data structures by the type constructors used to form the types of unbounded collections,

shifting the burden of quantified reasoning to the type system. The type system, in turn, uses

straightforward, syntax-guided rules to reduce quantified reasoning to a set of quantifier-free

implication checks which can be easily discharged by existing SMT solvers. The combination of

type inference, predicate abstraction, and fast SMT solving leads to an automated approach to

program verification which is precise, automatic, and scalable.

8

1.4 Other Approaches to Refinement Type Inference

Liquid types is not the first or only approach to refinement type inference for higher-

order, functional programs. Knowles and Flanagan [53] present a type reconstruction algorithm

for generalized refinement types, in which the refinement predicates are allowed to be arbitrary

terms of the language being type checked. The authors use the power of generalized refinement

type systems as leverage in solving a generalized type reconstruction problem: they present an

algorithm which assigns types to program expressions in a way that preserves typability, in a

manner roughly analogous to computing strongest postconditions and which takes advantage

of the presence of fixed point combinators in the refinement type language to express loop

invariants in the refinement type system.

The algorithm of Knowles and Flanagan only annotates expressions with types such

that the original program is typable if and only if annotated program is typable. However, their

algorithm does not — and cannot — decide if a program is typable, which is the essential step in

using a type system to perform static program verification. Instead, type checking is deferred to

a hybrid type checker [35, 44], which copes with the undecidability of type checking by deferring

checks which are not statically decidable to runtime.

An alternative approach to verifying higher-order functional programs is to reduce such

programs to higher-order recursion schemes and perform model checking on the result, as in

[56]. Originally, such approaches were limited to verifying Boolean programs; recent work by

Kobayashi et al. [57] has extended the reach of this approach to infinite-state programs by using

predicate abstraction to generate an abstract Boolean program from a given infinite-state program.

In the approach of Kobayashi et al., Counterexample-Guided Abstraction Refinement (CEGAR)

is used to attempt to automatically discover a set of predicates sufficient to verify the program

being analyzed. Terauchi [79] presents a similar approach to refinement type inference based on

CEGAR. As is generally true for CEGAR-based approaches, the type inference methods outlined

by Kobayashi et al. and Terauchi are incomplete: the CEGAR process may loop indefinitely,

endlessly generating counterexamples but never finding an invariant strong enough to prove

safety. In contrast, we provide an algorithm for deciding whether a program is typable using

more restrictive liquid types over a particular set of predicate templates. Thus, we trade off the

(typically quite small) cost of manually specifying a set of predicates over which to perform

inference for the benefit of a sound and complete (relative to the provided predicates) inference

system.

1.5 Low-Level Liquid Types

The first part of this dissertation presents liquid types as a suitable abstract domain for

verifying the safety and correctness of programs written in a high-level, pure functional language.

9

The second part of the dissertation shows that the benefits of liquid types for performing

quantified reasoning about unboundedly-large data structures can be extended to the setting

of low-level languages which incorporate mutable state, unrestricted aliasing, and unrestricted

casting and pointer arithmetic. To do so, we combine the basic liquid types technique with a

number of other techniques, each aimed at solving a particular part of the problem of verifying

low-level programs. We show that the resulting system, which we call low-level liquid types, is

capable of inferring precise invariants and showing the memory safety of a variety of programs

taken both from the wild and from the literature.

A principal concern in verifying programs with mutable state is coping with temporary

invariant violation: when the fields of a data structure are updated separately, invariants that

relate the values of the fields may be broken at intermediate points where not all fields have been

updated yet. A seemingly straightforward solution is to simply use strong updates: as each field

is updated, the type system updates the type of the field to precisely track the new value it was

assigned. When the invariant is reestablished, it will be directly reflected in the type of the data

structure, as the types of its fields precisely reflect the values they were assigned.

However, accommodating strong updates in a type system is complicated by two factors:

unrestricted aliasing and unboundedly-large data structures. Unrestricted aliasing means that

updating the type of a field is a non-trivial task: we must update the type of the field not only

for the pointer that is being accessed directly, but also for any of its potential aliases, which

may not even be in scope at the point where the update is performed, and thus not in the type

environment, making their types inaccessible for the type system to update. The presence of

unbounded collections makes strong updates difficult, as a single type must be used to describe

multiple elements.

To allow strong updates in spite of aliasing, we adopt ideas from the alias types system

of Walker and Morrisett [80], which adds a layer of indirection to the type system to allow

strong updates to simultaneously update the type of all of a pointer’s aliases. In the alias types

discipline, the type of a pointer does not explicitly mention the type of its referent, but instead

names a location in an abstract heap where the type of the referent is stored. Strong updates are

then performed on the types of abstract heap locations, rather than on the types of the pointers

themselves. Thus, by adding this layer of indirection, it becomes safe to perform strong updates

in spite of unrestricted aliasing, since all aliases of a pointer will share the same location name

and thus indirectly reference the same structure type.

As a side effect of adopting the alias types discipline, our type system automatically

separates the heap into disjoint regions in the style of separation logic. Thus, our type system

inherits some of the local reasoning capabilities of separation logic: updates to pointers affect

only a restricted, statically-determined part of the heap’s type, and our handling of function calls

follows a frame rule-like discipline to allow us to preserve the types of heap locations present in

the caller which are not accessed in the callee.

10

Adapting alias types to our setting solves our problems with reconciling aliasing with

strong update, but still does not make strong update safe in the presence of unbounded collections.

On the one hand, we wish to use strong updates to infer precise invariants in spite of temporary

invariant violations. On the other hand, the presence of unbounded collections means that

we must represent unbounded numbers of run-time objects using a bounded number of static

types — in essence, by representing all elements of a collection with a single type. It would be

unsound to strongly update the type of all elements of a collection when only a single element

has been modified, but this does not make the need for strong updates any less necessary. To

allow safe strong updates in the presence of unbounded collections, we adopt a local non-aliasing

discipline, which we intuitively describe via a version control analogy. We begin in a state where

all elements of the collection satisfy the same invariant, expressed as a type. At any point where

we need to modify an element of the collection, we conceptually check out that element from

the collection, giving it a type which is specific to that single element and which may thus be

strongly updated safely. After the element has been updated and its invariant reestablished, as

witnessed by the element’s type, it may be checked in to the collection, restoring the property

that all elements of the collection satisfy the same invariant. To preserve this property, we do

not allow two elements from the same collection to be checked out simultaneously. Our local

non-aliasing technique borrows from work on restrict [40, 3], adopt and focus [34], and thawing

and freezing [2].

A further complication in type checking low-level programs written in C-like languages

is the lack of an existing static type discipline: in C, types exist only to guide the compiler in

mapping C’s operations to machine operations, and arbitrary casts are permitted, so that the C

type information need not accurately describe the actual data values manipulated by the program

and is thus useless in building a refinement type system. In order to provide a solid foundation

for building a refinement type system suitable for low-level programs, we begin by developing

a physical type system which can accurately reflect the contents of memory. Our physical type

system expresses the types of pointers as pairs of an abstract location and an offset into that

location, expressed as the product of an interval, giving upper and lower bounds to the offset,

and a congruence class, giving the “period” of the offset (e.g., the integers mod 4 for a pointer

which may point to elements within an array of 4-byte integers); this representation allows us to

precisely track the targets of pointers in spite of pointer arithmetic. Similarly, our heap locations

are expressed as blocks composed of bindings to fixed and periodic offsets. Our structures for

physical types and processes for performing physical type inference are thus similar to those

adapted by [81, 64].

Finally, not all invariants we wish to express can be captured as refinement types which

relate fields of the same structure; properties of linked data structures, like sortedness, require

that we relate the values of fields within two linked structures. However, in the presence of

uncontrolled mutation, refinement types that contain references between two structures are

11

unsound. To allow our system to express such relationships, we allow fields of a data structure

to become final, i.e., immutable. We allow refinement predicates to contain pointer dereferences

as long as they only refer to final fields, allowing a sound form of dereference in refinement

types. One can then express invariants like sortedness by giving a refinement type that says, in

effect, that the value of the data field in any linked list node is less than the value of the data

field in the node pointed to by its next field. Our notion of final fields is inspired by Leino

et al.’s frozen fields [61] and the handling of object properties in Nystrom et al.’s system of

constrained types [70]; a key difference is that we infer which fields are final in our system and

automatically infer properties over final fields, while the other systems mentioned require users

to both manually annotate which fields are final and manually specify the invariants they expect

to hold.

The combination of liquid types with the above techniques results in an effective au-

tomated technique for inferring precise invariants of low-level programs that manipulate un-

bounded data structures.

1.6 Related Approaches to Verifying Low-Level Programs

We have already placed liquid types in the general context of existing program analysis

techniques. However, there are a few techniques which are especially closely related to low-level

liquid types; we draw explicit comparisons to them below.

Gulwani et al. [45] give a method for constructing abstract domains of quantified facts

from existing abstract domains which capture unquantified facts. In order to guide their analysis

in discovering quantified facts, the user is required to provide indexed predicate-style templates:

the analysis infers quantified facts that are instances of the user-provided templates, and the

variables the user wishes to be universally quantified must be explicitly annotated. Thus, the

user is ultimately responsible for guiding the analysis in inferring quantified facts. By contrast,

our system allows the user to provide predicate templates which the system may apply equally

well to either local variables or heap-allocated data; quantification is performed automatically,

without the user’s guidance.

The Boolean heaps abstract domain of Podelski and Wies [72] also addresses the problem

of applying predicate abstraction to infer quantified invariants of heap-allocated data. In their

approach, heap objects are abstracted as their evaluation under a set of a user-provided predicates;

a Boolean heap is a set of such evaluations, and their abstract domain is taken to be a set of

such heaps. Thus, the size of the abstract state may be doubly-exponential in the number of

predicates provided. Further, because there is no notion of heap separation built in to their

system, computing the abstract post state of a command in their system potentially involves

analyzing the state of all abstract objects on the heap. Finally, facts about linked data structures

must be expressed in their system using transitive closure or similar mechanisms. By contrast,

12

our low-level type system first divides the heap objects according to their may-alias sets; the

states of the objects in each set are then abstracted by liquid types, which are essentially the

objects’ evaluations under the user-provided predicates. Abstract post states are computed by

isolating a single element, performing strong updates, and performing a subtyping test. Finally,

we rely on the type structure to express quantification over linked data structures rather than

using transitive closure or reachability. Our system thus sacrifices some degree of expressiveness

for increased scalability: our goal is whole-program refinement type inference, while the Boolean

heaps approach has largely been applied to local shape inference, e.g., inferring loop invariants in

functions which have already been annotated with pre- and post-conditions. A further difference

between our approaches is that our low-level liquid types also ensure memory safety with respect

to a basic, unrefined type system, preventing certain errors like partial reads and writes of data

structure fields.

Both CCured [20] and Deputy [19] implement enhanced type systems for existing C

programs with the aim of ensuring memory safety. The CCured system annotates pointers with

kinds indicating whether they are used to reference a single item (“Safe” pointers), a sequence

of items as in an array (“Seq” pointers), or are subject to arbitrary pointer arithmetic (“Wild”

pointers). CCured then inserts run-time bounds checks for Seq and Wild pointers to ensure

the safety of memory accesses in the presence of arbitrary pointer arithmetic. For unannotated

programs, a whole-program pointer kind inference algorithm annotates each program with its

kind, attempting to find as many Safe pointers as possible. The Deputy system implements a

refinement type checker for the C programming language. In Deputy, a flow- and path-insensitive

type system is used to insert dynamic safety checks into the program. The system then performs

a static analysis to attempt to optimize away as many checks as possible, reducing the run-

time penalty imposed for type safety. Both CCured and Deputy are hybrid type systems which

insert dynamic type checks when a type obligation cannot be proven statically. In contrast to

these hybrid type systems, we aim for full static verification, and do not insert dynamic checks.

However, our system could easily be extended to handle the insertion of dynamic contract checks

where type inference is unable to prove that a term has a particular required type. Similarly, our

system could be used to discharge the assertions placed by a system like Deputy.

An alternate approach of Condit et al., implemented in the Havoc system [17], similarly

combines logic- and type-based approaches to program verification, but comes at the problem

from a complementary direction: rather than embedding logic into types, as in a refinement type

system, their system begins with a Hoare-style verifier, then embeds type assertions into the

logic. Type safety is proved by explicitly asserting and verifying a type safety predicate relating

the contents of memory and their corresponding types at each step of evaluation. Combining

type assertions with other properties makes their system highly expressive, at the cost of placing

additional burdens on the underlying theorem prover. While the authors provide a decision

procedure for discharging type assertions, they do not address the problems of invariant inference

13

and reasoning with general quantified invariants.

The aforementioned projects focus on bringing the benefits of static checking to C

programs. However, in recent years, a number of new languages and accompanying type

systems have been created to address the problem of safe low-level programming.

The Cyclone project of Jim et al. [51] aims to develop a type- and memory-safe C-like

language with region-based memory management, polymorphic types, existential types, and

without pointer arithmetic. Types are explicitly specified by the user. The Cyclone language

ensures memory and type safety for valid programs, but does not include a refinement type

system capable of verifying more general properties. Additionally, programs written in C must

be ported to Cyclone — for example, to remove pointer arithmetic to use regions in place of

manual memory management.

Similarly, the BitC project of Shapiro et al. [76] attempts to bring strong static type

checking and inference for (non-refinement) types to a low-level language suitable for operating

system development. The goal of BitC is essentially to build a low-level derivative of ML which

can be used to write systems software, that is, one which allows the programmer to determine

the representations of data types and which features a type system that thoroughly integrates

polymorphism with mutable state. In contrast to BitC, our system aims at proving more general

properties of data structures in existing C programs, but does not (yet) incorporate features like

type polymorphism and effect types.

The ATS project of Xi et al. [88] combines type checking and theorem proving techniques

to create a language suitable for systems programming. The techniques supported by the system

enable the verification of a wide range of properties — for example, linear types can be used

to verify correct resource and API usage. Strong updates and pointer arithmetic are handled

through stateful views, in which proof terms witness the types of memory contents at particular

addresses; proof terms are consumed and produced during set and get operations, in an approach

based on linear logic. The stateful views approach is more general than ours: for example, it is

possible in ATS to change the type of all elements in a data structure after an update, while our

system only allows strong updates on single data structure elements to ensure data structure

invariants hold for the entire execution of the program, in spite of temporary invariant violations.

The generality of ATS comes at the cost of increased programmer annotation burden: even simple

programs using stateful views require the programmer to explicitly manipulate proof terms to

show that heap accesses are within bounds and that the data accessed have the expected types.

In comparison to all of the above projects, low-level liquid types is the only system

to combine a refinement type system expressive enough to statically verify memory safety in

existing C programs while also supporting type inference.

14

1.7 Contributions

This dissertation makes the following contributions:

• We present liquid types, an approach to automated program verification based on refinement

type inference. We show how liquid types combines type checking with predicate abstrac-

tion to automatically infer precise, universally-quantified invariants about unboundedly-

large data structures like lists, arrays, and trees, and permits simple reasoning about

higher-order functions.

• We develop the basic liquid types technique in the context of a higher-order, pure functional

language.

• We present low-level liquid types, which adapts liquid types to the setting of low-level

programs with mutable state, pointer arithmetic, and unrestricted aliasing.

• We show, through a series of benchmarks taken from the literature and from the wild, that

the liquid types approach to program verification can be used to show a variety of safety

and correctness properties of realistic programs, both functional and imperative, while

imposing an extremely low annotation burden on the programmer — under 3% of the total

number of the program source lines are composed of input predicate templates used in

refinement type inference.

In the following chapters, we show that liquid refinement type inference allows pro-

grammers to verify data-sensitive safety properties of real-world programs written in high-level,

functional languages, as well as in low-level imperative languages, at the cost of an extremely

small annotation burden on the programmer. We first develop the liquid types technique in the

context of a high-level, functional language which is a subset of ML. Next, we adapt the liquid

types technique to the setting of a low-level, C-like language with pointer arithmetic and mutable

state. Throughout, we show, through a series of benchmarks taken both from the literature and

the wild, that liquid types enables the verification of a crucial safety properties in real-world

programs while imposing an annotation burden of at most 3% of the program size. Finally, we

suggest a number of directions for future work in extending the reach of the liquid type inference

technique and the expressiveness of refinement types in general.

Chapter 2

Liquid Types

In this chapter, we develop the liquid type inference technique in the setting of an

ML-like, higher-order, functional language.

2.1 Overview

To start, we show how the liquid types algorithm works through a series of examples

that demonstrate how liquid types enables precise data- and control flow-sensitive reasoning to

prove the safety of array-manipulating benchmarks which take advantage of language features

like recursion, higher-order functions, and polymorphism.

2.1.1 Refinement Types and Qualifiers

We begin our overview of the liquid types algorithm for refinement type inference by

describing refinement types, logical qualifiers, and liquid types.

Refinement Types Following [4, 35], our system allows base refinement types of the form

{ν : t | φ},

where ν is a special value variable not appearing in the program, t is a base type, and φ is a logical

predicate constraining the value variable called the refinement predicate. Intuitively, the refinement

predicate specifies the set of values v of the base type t such that the predicate φ[ν 7→ v] is valid.

For example, {ν : int | 0 < ν} specifies the set of positive integers, and {ν : int | ν ≤ n}
specifies the set of integers whose value is less than or equal to the value of the program variable

n. We use the base refinement types to build up dependent function types, written x : τ1 → τ2

(following [4, 35]). Here, τ1 is the domain type of the function, and the formal parameter x may

appear in the refinements of the range type τ2.

15

16

Logical Qualifiers and Liquid Types A logical qualifier is a logical predicate over the program

variables, the special value variable ν which is distinct from the program variables, and the

special placeholder variable ? that can be instantiated with program variables.

For the rest of this subsection, let us assume that Q is the set of logical qualifiers

{0 ≤ ν, ? ≤ ν, ν < ?, ν < len ?}.

In section 2.4 we describe a simple set of qualifiers for array bounds checking. We say that a

qualifier q matches the qualifier q′ if replacing some subset of the free variables in q with ? yields

q′. For example, the qualifier x ≤ ν matches the qualifier ? ≤ ν. We write Q? for the set of all

qualifiers not containing ? that match some qualifier in Q. For example, when Q is as defined as

above, Q? includes the qualifiers

{0 ≤ ν, x ≤ ν, y ≤ ν, k ≤ ν, ν < n, ν < len a}.

We write t as an abbreviation for {ν : t | true}. Additionally, when the base type t is

clear from the context, we abbreviate {ν : t | φ} as {φ}. For example,

x : int → y : int → {x ≤ ν ∧ y ≤ ν}

denotes the type of a (curried) function that takes two integer arguments x and y and returns an

integer no less than x and y.

2.1.2 Liquid Type Inference by Example

Given a program and a set of qualifiers Q, our liquid type inference algorithm proceeds

in three steps:

Step 1: Hindley-Milner Type Inference First, our algorithm invokes Hindley-Milner [26] to

infer types for each subexpression and the necessary type generalization and instantiation

annotations. Next, our algorithm uses the computed ML types to assign to each subexpression a

template, a dependent type with the same structure as the inferred ML type, but which has liquid

type variables κ representing the unknown type refinements.

Step 2: Liquid Constraint Generation Second, we use the syntax-directed liquid typing rules to

generate a system of constraints that capture the subtyping relationships between the templates

that must be met for a liquid type derivation to exist.

Step 3: Liquid Constraint Solving Third, our algorithm uses the subtyping rules to split

the complex template constraints into simple constraints over the liquid type variables. Our

algorithm then solves these simple constraints using a fixpoint computation inspired by predicate

abstraction [1, 43] to find, for each κ, the strongest conjunction of qualifiers from Q? that satisfies

17

let max x y =

if x > y then x else y

let rec sum k =

if k < 0 then 0 else

let s = sum (k-1) in

s + k

let foldn n b f =

let rec loop i c =

if i < n then loop (i+1) (f i c) else c in

loop 0 b

let arraymax a =

let am l m = max (sub a l) m in

foldn (len a) 0 am

Figure 2.1: Example OCaml Program

all the constraints. Note that, for the final step, we need only consider the finite subset of Q?

whose free variables belong to the program.

In the following, through a series of examples, we show how our type inference algorithm

incorporates features essential for inferring precise dependent types — namely path sensitivity,

recursion, higher-order functions, and polymorphism — and thus can statically prove the safety

of array accesses.

Example 1: Path Sensitivity

Consider the max function, shown in Figure 2.1, as an OCaml program. We will show

how our algorithm infers that max returns a value no less than both its arguments.

Step 1 HM infers that max has the type x : int → y : int → int. Using this type, we create

a template for the liquid type of max, x : {κx} → y : {κy} → {κ1}, where κx, κy, κ1 are liquid

type variables representing the unknown refinements for the formals x and y and the body of max,

respectively.

Step 2 As the body is an if expression, our algorithm generates the following two constraints

that stipulate that, under the appropriate branch condition, the then and else expressions,

respectively x and y, have types that are subtypes of the entire body’s type:

x : {κx}; y : {κy}; x > y ` {ν = x} <: {κ1} (1.1)

x : {κx}; y : {κy};¬(x > y) ` {ν = y} <: {κ1} (1.2)

18

Constraint 1.1 stipulates that when x and y have the types {κx} and {κy}, respectively,

and x > y, the type of the expression x, namely the set of all values equal to x, must be a subtype

of the body’s type, {κ1}. Similarly, constraint 1.2 stipulates that when x and y have the types

{κx} and {κy}, respectively, and ¬(x > y), the type of the expression y, namely the set of all

values equal to y, must be a subtype of the body’s type, {κ1}.

Step 3 Since the program is “open”, i.e., there are no calls to max, we assign κx and κy the

predicate true, meaning that any integer arguments can be passed, and use a theorem prover

to find the strongest conjunction of qualifiers in Q? that satisfies the subtyping constraints. The

theorem prover deduces that when x > y (respectively, ¬(x > y)) if ν = x (respectively, ν = y)

then x ≤ ν and y ≤ ν. Hence, our algorithm infers that x ≤ ν ∧ y ≤ ν is the strongest solution for

κ1 that satisfies the two constraints. By substituting the solution for κ1 into the template for max,

our algorithm infers

max : x : int → y : int → {ν : int | x ≤ ν ∧ y ≤ ν}.

Example 2: Recursion

Next, we show how our algorithm infers that the recursive function sum from Figure 2.1

always returns a non-negative value greater than or equal to its argument k.

Step 1 HM infers that sum has the type k : int → int. Using this type, we create a template for

the liquid type of sum, k : {κk} → {κ2}, where κk and κ2 represent the unknown refinements

for the formal k and body, respectively. Due to the let rec, we use the created template as the

type of sum when generating constraints for the body of sum.

Step 2 Again, as the body is an if expression, we generate constraints that stipulate that, under

the appropriate branch conditions, the “then” and “else” expressions have subtypes of the body

type {κ2}. For the “then” branch, we get a constraint:

sum : . . . ; k : {κk}; k < 0 ` {ν = 0} <: {κ2} (2.1)

The else branch is a let expression. First, considering the expression that is locally bound, we

generate a constraint

sum : . . . ; k : {κk};¬(k < 0) ` {ν = k− 1} <: {κk} (2.2)

19

from the call to sum that forces the actual passed in at the callsite to be a subtype of the formal of

sum. The locally bound variable s gets assigned the template corresponding to the output of the

application, {κ2[k 7→ k− 1]}, i.e., the output template of sum with the formal replaced with the

actual argument, and we get the next constraint that ensures the “else” expression is a subtype of

the body’s type, {κ2}:

¬(k < 0); s : {κ2[k 7→ k− 1]} ` {ν = s+ k} <: {κ2}. (2.3)

Step 3 Here, as sum is called, we try to find the strongest conjunction of qualifiers for κk

and κ2 that satisfies the constraints. To satisfy constraint 2.2, κk can only be assigned true

(the empty conjunction), as when ¬(k < 0), the value of k− 1 can be negative, zero, or pos-

itive. On the other hand, κ2 is assigned 0 ≤ ν ∧ k ≤ ν, the strongest conjunction of qualifiers

in Q? that satisfies constraint 2.1 and constraint 2.3. Constraint 2.1 is trivially satisfied as the

theorem prover deduces that when k < 0, if ν = 0 then 0 ≤ ν and k ≤ ν. When κ2 is as-

signed the above conjunction, the binding for s in the environment for constraint 2.3 becomes

s : {0 ≤ ν ∧ k− 1 ≤ ν}. Thus, constraint 2.3 is satisfied, as the theorem prover deduces that

when ¬(k < 0) and (0 ≤ ν ∧ k− 1 ≤ ν)[ν 7→ s], if ν = s+ k then 0 ≤ ν and k ≤ ν. The sub-

stitution simplifies to 0 ≤ s∧ k− 1 ≤ s, which effectively asserts to the solver the knowledge

about the type of s, and crucially allows the solver to use the fact that s is non-negative when

determining the type of s+ k, and hence the output of sum. Thus, recursion enters the picture,

as the solution for the output of the recursive call, which is bound to the type of s, is used in

conjunction with the branch information to prove that the output expression is non-negative.

Plugging the solutions for κk and κ2 into the template, our system infers

sum : k : int → {ν : int | 0 ≤ ν ∧ k ≤ ν}.

Example 3: Higher-Order Functions

Next, consider a program comprising only the higher-order accumulator foldn shown

in Figure 2.1. We show how our algorithm infers that f is only called with arguments between 0

and n.

Step 1 HM infers that foldn has the polymorphic type

Λα.n : int → b : α → f : (int → α → α) → α.

From this ML type, we create the new template

Λα.n : {κn} → b : α → f : ({κ3} → α → α) → α

for foldn, where κn and κ3 represent the unknown refinements for the formal n and the first

parameter for the accumulation function f passed into foldn. This is a polymorphic template, as the

20

occurrences of α are preserved. This will allow us to instantiate α with an appropriate dependent

type at places where foldn is called. HM infers that the type of loop is i : int → c : α → α,

from which we generate a template i : κi → c : α → α for loop, which we will use when

analyzing the body of loop.

Step 2 First, we generate constraints inside the body of loop. As HM infers that the type of the

body is α, we omit the trivial subtyping constraints on the “then” and “else” expressions. Instead,

the two interesting constraints are:

. . . ; i : {κi}; i < n ` {ν = i+ 1} <: {κi} (3.1)

which stipulates that the actual passed into the recursive call to loop is a subtype of the expected

formal, and

. . . ; i : {κi}; i < n ` {ν = i} <: {κ3} (3.2)

which forces the actual i to be a subtype of the first parameter of the higher-order function f, in

the environment containing the critical branch condition. Finally, the application loop 0 yields

. . . ` {ν = 0} <: {κi} (3.3)

forcing the type of the actual, 0, to be a subtype of the type of the formal, i.

Step 3 Here, as foldn is not called, we assign κn the predicate true and try to find the strongest

conjunction of qualifiers in Q? for κi and κ3. We can assign to κi the predicate 0 ≤ ν, which

trivially satisfies constraint 3.3, and also satisfies constraint 3.1 as when (0 ≤ ν)[ν 7→ i], if

ν = i+ 1 then 0 ≤ ν. That is, the theorem prover can deduce that if i is non-negative, then so is

i+ 1. To κ3 we can assign the conjunction 0 ≤ ν ∧ ν < n which satisfies constraint 3.2 as when

(0 ≤ ν)[ν 7→ i] and i < n, if ν = i then 0 ≤ ν and ν < n. By plugging the solutions for κ3 and κn

into the template our algorithm infers

foldn : Λα.n : int → b : α → f : ({0 ≤ ν ∧ ν < n} → α → α) → α.

Example 4: Polymorphism and Array Bounds Checking Consider the function amax that calls

foldn with a helper that calls max to compute the max of the elements of an array and 0. Suppose

there is a base type array representing arrays of integers. Arrays are accessed via a primitive

function

sub : a : array → j : {ν : int | 0 ≤ ν ∧ ν < len a} → int,

where the primitive function len returns the number of elements in the array. The sub function

takes an array and an index that is between zero and the number of elements, and returns the

integer at that index in the array. We show how our algorithm combines predicate abstraction,

21

function subtyping, and polymorphism to prove that (a) the array a is safely accessed at indices

between 0 and len a, and (b) amax returns a non-negative integer.

Step 1 HM infers that (1) amax has the type a : array → int, (2) am has the type l : int →
m : int → int, and (3) foldn called in the body is a polymorphic instance where the type

variable α has been instantiated with int. Consequently, our algorithm creates the following

templates: (1) a : array → {κ4} for amax, where κ4 represents the unknown refinement for the

output of amax, (2) l : κl → m : κm → {κ5} for am, where κl, κm, and κ5 represent the unknown

refinements for the parameters and output type of am respectively, and (3) {κ6} for the type

that α is instantiated with, and so the template for the instance of foldn inside amax is the type

computed in the previous example with {κ6} substituted for α, namely,

n : int → b : {κ6} → f : ({0 ≤ ν ∧ ν < n} → {κ6} → {κ6}) → {κ6}.

Step 2 First, for the application sub a l, our algorithm generates

l : {κl}; m : {κm} ` {ν = l} <: {0 ≤ ν ∧ ν < len a}, (4.1)

which states that the argument passed into sub must be within the array bounds. For the

application max (sub a l) m, using the type inferred for max in Example 1, we get

l : {κl}; m : {κm} ` {sub a l ≤ ν ∧ m ≤ ν} <: {κ5}, (4.2)

which constrains the output of max (with the actuals (sub a l) and m substituted for the parameters

x and y, respectively), to be a subtype of the output type {κ5} of am. The call foldn (len a) 0

generates

. . . ` {ν = 0} <: {κ6}, (4.3)

which forces the actual passed in for b to be a subtype of {κ6}, the type of the formal b in this

polymorphic instance. Similarly, the call foldn (len a) 0 am generates a constraint

. . . ` l : {κl} → m : {κm} → {κ5} <: {0 ≤ ν ∧ ν < len a} → {κ6} → {κ6}, (4.4)

forcing the type of the actual am to be a subtype of the formal f inferred in Example 1, with the

curried argument len a substituted for the formal n of foldn, and

. . . ` {κ6} <: {κ4}, (4.5)

forcing the output of the foldn application to be a subtype of the body of amax. Upon simplifica-

tion using the standard rule for subtyping function types, constraint 4.4 reduces to

. . . ` {0 ≤ ν ∧ ν < len a} <: {κl} (4.6)

. . . ` {κ6} <: {κm} (4.7)

. . . ` {κ5} <: {κ6} (4.8)

22

Step 3 The strongest conjunction of qualifiers from Q? that we can assign to κm, κ4, κ5 and κ6 is

the predicate 0 ≤ ν. In essence, our algorithm infers that we can “instantiate” the type variable α

with the dependent type {ν : int | 0 ≤ ν}. This is sound because the base value 0 passed in is

non-negative, so that constraint 4.3 is satisfied, and the accumulation function passed in (am), is

such that if its second argument (m of type {κm}) is non-negative then the output (of type {κ5})
is non-negative, so that constraint 4.2 is satisfied. Plugging the solution into the template, our

algorithm infers

amax : array → {ν : int | 0 ≤ ν}.

The strongest conjunction over Q? we can assign to κl is 0 ≤ ν ∧ ν < len a, which trivially

satisfies constraint 4.6. Moreover, with this assignment, we have satisfied the “bounds check”

constraint 4.1, i.e., we have inferred an assignment of dependent types to all the program

expressions that proves that all array accesses occur within bounds.

This concludes our broad overview of the liquid types refinement type inference tech-

nique. In section 2.2, we outline the basic ML-like language, λL, on which we build the liquid

types algorithm, and give its refinement typing rules. We give the details of the constraint-

based liquid types algorithm in section 2.3, and prove its correctness in Appendix A. We report

benchmark results in section 2.4.

2.2 The λL Language and Type System

We first present the syntax and static semantics of our core language λL, a variant of the

λ-calculus with ML-style polymorphism extended with liquid types. We begin by describing the

elements of λL, including expressions, types, and environments (Section 2.2.1). Next, we present

the type judgments and derivation rules and state a soundness theorem which relates the static

type system with the operational semantics (Section 2.2.2). We conclude by describing how the

design of our type system enables automatic refinement type inference (Section 2.2.3).

2.2.1 Elements of λL

The syntax of values, expressions, and types for λL is summarized in Figure 2.2. λL

values include variables and special constants which include integers, arithmetic operators

and other primitive operations described below. λL expressions include values, λ-abstractions,

and function applications. In addition, λL includes as expressions the common constructs

if-then-else and let, which the liquid type inference algorithm exploits to generate precise

types.

Types and Schemas We use t to denote base types such as bool or int. λL has a system of

refined base types, dependent function types, and ML-style polymorphism via type variables

23

v ::= Values

x variable

| c constant

e ::= Expressions

v value

| λx.e abstraction

| v1 v2 application

| if v then e1 else e2 if-then-else

| let x = e1 in e2 let binding

| Λα.e type abstraction

| e[τ̇] type instantiation

Q ::= Liquid Refinements

true true

| q logical qualifier in Q?

| Q1 ∧Q2 conjunction of qualifiers

t ::= Base Types

int base type of integers

| bool base type of Booleans

| α type variable

F(R) ::= Type Skeletons

{ν : t | R} base

| x : F(R) → F(R) function

S(R) ::= Type Schema Skeletons

F(R) monotype

| Λα.S(R) polytype

τ̇, σ̇ ::= F(·), S(·) Types, Schemas

τ, σ ::= F(φ), F(φ) Refinement Types, Schemas

τ̂, σ̂ ::= F(Q), S(Q) Liquid Types, Schemas

Figure 2.2: Syntax of λL expressions and types

24

that are universally quantified at the outermost level to yield polymorphic type schemas. We

write τ̇ and σ̇ for ML types and schemas, τ and σ for refinement types and schemas, and τ̂ and σ̂

for liquid types and schemas. Our refinement predicates φ are drawn from EUFA, the decidable

logic of equality, uninterpreted functions, and linear arithmetic [69].

Environments and Well-formedness A type environment Γ is a sequence of type bindings x : σ̂ and

guard predicates φ. The former are standard; the latter capture constraints about the if-then-else

branches under which an expression is evaluated, which is required to make the system path

sensitive (Section 2.2.3). A type is considered well-formed with respect to an environment if all the

free variables appearing in the refinement predicates of the type are bound in the environment.

An environment is considered well-formed if, in each type binding, the type is well-formed with

respect to the preceding (prefix) environment.

Shapes The shape of the refinement type τ̂, denoted by Shape(τ̂), is the ML type obtained by

erasing all refinement predicates. We lift Shape to type schemas σ̂ in the natural way. We lift

Shape to type environments by applying it to each type binding and eliminating the guard

predicates.

Constants As in [71, 35], the basic units of computation are the constants c built into λL,

each of which has a dependent type ConstType(c) that precisely captures the semantics of the

constants. These include basic constants, corresponding to integers and Boolean values, and

primitive functions, which encode various operations. The set of constants of λL includes:

true : {ν : bool | ν}
false : {ν : bool | ¬ν}
⇔ : x : bool → y : bool → {ν : bool | ν⇔ (x⇔ y)}

3 : {ν : int | ν = 3}
= : x : int → y : int → {ν : bool | ν⇔ x = y}
+ : x : int → y : int → {ν : int | ν = x+ y}

fix : Λα.(α → α) → α

len : a : array → {ν : int | 0 ≤ ν ∧ ν = len a}
sub : a : array → i : {ν : int | 0 ≤ ν ∧ ν < len a} → int

It may seem that the types of some constants are defined in terms of themselves — for

example, in the return type of +. This is simply an artifact of using the same symbol, +, to

represent both addition in the logic we use to express refinement predicates and as a name for

the ML function which performs addition; the entities referenced by the symbol are completely

distinct.

For clarity, we will use infix notation for constants like +. To simplify the exposition,

we assume there is a special base type that encodes integer arrays in λL. The length of an array

25

Well-Formed Types Γ � σ

φ well-sorted in Γ; ν : t

Γ � {ν : t | φ}
WT-BASE

Γ � α
WT-VAR

Γ; x : τx � τ

Γ � x : τx → τ
WT-FUN

Γ � σ

Γ � Λα.σ
[WT-POLY]

Figure 2.3: Rules for Liquid Type Well-Formedness

value is obtained using len. To access the elements of the array, we use sub, which takes as input

an array a and an index i that must be within the bounds of a, i.e., non-negative and less than

the length of the array.

2.2.2 Liquid Type Checking Rules

We now describe the key ingredients of the type system: the typing judgments and

derivation rules summarized in Figure 2.4.

Our system has three kinds of judgments relating environments, expressions, and types.

Well-formedness Judgment Γ � τ: This judgment states that the dependent type schema τ is

well-formed under the type environment Γ. Intuitively, a type is well-formed with respect to

an environment if its base refinements are well-sorted, Boolean-valued predicates which

refer only to variables in the environment. We take our refinement logic to have three basic

sorts, int, bool, and array, and define well-sortedness with respect to an environment

straightforwardly.

Subtype Judgment Γ ` σ1 <: σ2: This judgment states that refinement type schema σ1 is a sub-

type of schema σ2 in environment Γ.

Liquid Type Judgment Γ `Q e : σ: This judgment states that, using the logical qualifiers Q, the

expression e has the type schema τ under the type environment Γ.

Soundness of Liquid Type Checking We note that our liquid typing judgment Γ `Q e : σ is

a refinement of a general refinement typing judgment Γ ` e : σ, that is, any valid liquid type

derivation is automatically a derivation in a more general refinement type system, as the only

difference between the two is that our liquid type system enforces a particular structure on the

refinements that may occur in certain types. The soundness of our type system follows from the

soundness of similar refinement type systems, treated at length by Bengtson et al. [7], Knowles

and Flanagan [55], and Belo et al. [6], among others; since our focus is on refinement inference

26

Liquid Type Checking Γ `Q e : σ

Γ `Q e : σ1 Γ ` σ1 <: σ2 Γ � σ2

Γ `Q e : σ2

LT-SUB

Γ(x) = {ν : t | φ}

Γ `Q x : {ν : t | ν = x}
LT-VAR

Γ(x) not a base type

Γ `Q x : Γ(x)
LT-VAR

Γ `Q c : ConstType(c)
LT-CONST

Γ; x : τ̂x `Q e : τ Γ � x : τ̂x → τ

Γ `Q λx.e : x : τ̂x → τ
LT-FUN

Γ `Q v1 : x : τx → τ Γ `Q v2 : τx

Γ `Q v1 v2 : τ[x 7→ v2]
LT-APP

Γ `Q v : bool Γ; v `Q e1 : σ̂ Γ;¬v `Q e2 : σ̂ Γ � σ̂

Γ `Q if v then e1 else e2 : σ̂
LT-IF

Γ `Q e : σ α not free in Γ

Γ `Q Λα.e : Λα.σ
LT-GEN

Γ `Q e : Λα.σ Γ � τ̂ Shape(τ̂) = τ̇

Γ `Q e[τ̇] : σ[α 7→ τ̂]
LT-INST

Subtyping Γ ` σ1 <: σ2

Γ � φ1 ⇒ φ2

Γ ` {ν : t | φ1} <: {ν : t | φ2}
<:-BASE

Γ ` τ′x <: τx Γ; x : τ′x ` τ <: τ′

Γ ` x : τx → τ <: x : τ′x → τ′
<:-FUN

Γ ` α <: α
<:-VAR

Γ ` σ1 <: σ2

Γ ` Λα.σ1 <: Λα.σ2

<:-POLY

Figure 2.4: Rules for Liquid Type Checking

rather than the underlying refinement type system, we simply assume the soundness of the

underlying refinement type system. We formalize this assumption as follows:

27

Assumption 1. (Overapproximation of Liquid Type Judgment) If Γ `Q e : σ then Γ ` e : σ.

Let ↪→ describe the single evaluation step relation for λL expressions and ↪→∗ describe

the reflexive, transitive closure of ↪→. We formalize our assumption of a sound underlying

refinement type system as follows:

Assumption 2. (Refinement Type Soundness) If Γ ` e : σ, then either e ↪→∗v for some value v or the

evaluation of e does not terminate.

The preceding two assumptions combine to give the safety of the liquid types system:

Theorem 1. (Liquid Type Safety) If ∅ `Q e : σ, then either e ↪→∗v for some value v or the evaluation of

e does not terminate.

We conclude that if an expression is well-typed in our type system then we are guaran-

teed that evaluation does not get “stuck”, i.e., at run-time, every primitive operation receives

valid inputs. Thus, if a program type checks we are guaranteed that every call to sub gets an

index that is within the array’s bounds. Arbitrary safety properties (e.g., divide-by-zero errors)

can be expressed by using suitable types for the appropriate primitive constant (e.g., requiring

the second argument of (/) to be non-zero or requiring the argument to the assert function to

evaluate to true).

2.2.3 Features of the Liquid Type System

Next, we describe some of the features unique to the design of the liquid type system

and how they contribute to automatic type inference and verification.

1. Value and Path Sensitivity Our type system is both value and path sensitive: its reasoning

incorporates both the values of variables, as determined through the refinement type bindings in

the environment, and information about the branches under which an expression is evaluated,

determined by the guard predicates in the environment. Both value and path sensitivity are

crucial to proving properties like the safety of array accesses within a program. For example,

our type system uses the branch information in the sum example of section 2.1 to infer that the

occurrence of k inside the else expression is non-negative, since the else expression is evaluated

only when k ≥ 0. Further, our system uses the fact that s is non-negative, expressed as the

refinement type {ν : int | ν ≥ 0} bound to s, to determine that the expression s + k returns a

non-negative value.

Note that value and path sensitivity are especially important in performing static array

bounds checking, as programmers often compare an array index to some some other variable that

is known to be smaller than the array length (e.g., in amax from section 2.1), and only perform the

array access under the appropriate guard; verifying the safety of array accesses in this situation

28

requires knowing not only what values variables may take on, captured in their refinement types,

but also which branch conditions are in effect.

Checking that a value has an expected type — for example, that an array index is within

bounds — is done by performing a subtyping check, while type inference is performed by

generating subtyping constraints. Thus, the crucial place where value and path information must

be accounted for in our reasoning is in subtyping. By the rules in Figure 2.4, all subtyping checks

are reduced to subtyping checks over base (i.e., non-function) refinement types; these subtyping

checks are further reduced to checking logical implications between refinement predicates, given

the value and path assumptions in the environment. Thus, in order to use the information from

the environment in implication checks, we must embed the type environment into the logic. We

write

[[Γ]] ≡
∧
{φ | φ ∈ Γ} ∧

∧
{φ[ν 7→ x] | x : {ν : t | φ} ∈ Γ}

as the embedding for the environment into our refinement logic. Notice that we use the guard

predicates and base type bindings in the environment to strengthen the antecedent of the

implication. However, we substitute all occurrences of the value variable ν in the refinements

from Γ with the actual variable being refined, thereby asserting in the antecedent that the program

variable satisfies the base refinement predicate. Thus, in the embedded formula, all occurrences

of ν refer to the two types that are being checked for subtyping. For example, for the then

expression in max from section 2.1, the subtyping relation: x : int; y : int; x > y ` {ν = x} <:

{x ≤ ν ∧ y ≤ ν} holds as the following implication is valid in EUFA: (true ∧ true ∧ x > y) ∧
(ν = x)⇒ x ≤ ν ∧ y ≤ ν.

2. Recursion via Polymorphism To handle polymorphism, our type system incorporates type

generalization and instantiation annotations, which are over ML type variables α and monomor-

phic ML types τ̇, respectively, and thus can be reconstructed via a standard type inference

algorithm. The rule LT-INST allows a type schema to be instantiated with an arbitrary liquid type

τ̂ of the same shape as τ̇, the monomorphic ML type used for instantiation. We use polymorphism

to encode recursion via the polymorphic type given to fix. That is, let rec bindings are syntac-

tic sugar: let rec f = e in e’ is internally converted to let f = fix (fun f -> e) in e’.

The expression type checks if there is an appropriate liquid type that can be instantiated for the α

in the polymorphic type of fix; this liquid type corresponds to the type of the recursive function

f.

3. The Liquid Type Restriction The most critical difference between the rules for liquid type

checking and other refinement type systems is that our rules stipulate that certain kinds of

expressions have liquid types. In essence, these expressions are the key points where appropriate

refinement types must be inferred. By forcing the types to be liquid, we bound the space of

possible solutions, thus making inference efficiently decidable.

29

LT-INST For polymorphic instantiation, also the mechanism for handling recursion, the liquid

type restriction enables efficient inference by making the set of candidate refinement types finite.

LT-FUN For λ-abstractions, we impose the restriction that the input and output be liquid to

ensure the types remain small, thereby making algorithmic checking and inference efficient. This

is analogous to procedure “summarization” for first-order programs.

LT-IF For conditional expressions we impose the liquid restriction and implicitly force the then

and else expressions to be subtypes of a fresh liquid type, instead of an explicit “join” operator

as in dataflow analysis. We do so as the expression may have a function type and, with a join

operator, input type contravariance would introduce disjunctions into the refinement type which

would have unpleasant algorithmic consequences.

LT-LET For let expressions, we impose the liquid restriction as a means of eliminating the locally

bound variable from the refinement type of the whole expression (as the local variable goes

out of scope). The antecedent Γ � τ requires that the liquid type be well-formed in the outer

environment, which, together with the condition, enforced via alpha-renaming, that each variable

is bound only once in the environment, is essential for ensuring the soundness of our system

(Appendix A). An alternative would be to existentially quantify the bound variable in the let

expression’s type, in the style of Knowles and Flanagan [54]; we eschew this option for simplicity.

4. Placeholder Variables and α-Renaming We use the placeholder variables ? in our refinement

predicates instead of “hard-coded” program variables to make our type system robust to α-

renaming. If Q is {x < ν}, then ∅ `Q λx.x + 1 : x : int → {x < ν} a valid judgment, but

∅ `Q λy.y + 1 : y : int → {y < ν} is not, as y < ν is not in Q?. If instead Q is {? < ν}, then

Q? includes {x < ν, y < ν} and so both of the above are valid judgments. In general, our type

system is robust to renaming in the following sense: if Γ `Q e1 : σ1 and e1 is α-equivalent to e2

and the free variables of Q are bound1 in Γ, then for some σ2 that is α-equivalent to σ1, we have

Γ `Q e2 : σ2.

2.3 Liquid Type Inference

We now turn to the heart of our system: the algorithm Liquid, shown in Figure 2.6,

that takes as input a type environment Γ, an expression e, and a finite set of logical qualifiers

Q and determines whether e is well-typed over Q, i.e., whether there exists some σ such that

Γ `Q e : σ. Our algorithm proceeds in three steps. First, we observe that the dependent type for

any expression must be a refinement of its ML type, and so we invoke Hindley-Milner (HM) to

infer the types of subexpressions, and use the ML types to generate templates representing the

1Recall that variables are bound at most once in any environment

30

unknown refinement types for the subexpressions (Section 2.3.1). Second, we use the syntax-

directed liquid typing rules from Figure 2.4 to build a system of constraints that capture the

subtyping relationships between the templates that must hold for a liquid type derivation to exist

(Section 2.3.2). Third, we use Q to solve the constraints using a technique inspired by predicate

abstraction (Section 2.3.3).

2.3.1 ML Types and Templates

Our type inference algorithm is based on the observation that the liquid type derivations

are refinements of the ML type derivations, and hence the refinement types for all subexpressions

are refinements of their ML types.

ML Type Inference Oracle Let HM be an ML type inference oracle, which takes an ML type

environment Γ and an expression e and returns the ML type schema σ̇ if and only if, using

the classical ML type derivation rules [26], there exists a derivation Γ ` e : σ̇. The liquid type

derivation rules are refinements of the ML type derivation rules. That is, if Γ `Q e : σ then

HM(Shape(Γ), e) = Shape(σ). Moreover, we assume that the ML type derivation oracle has

“inserted” suitable type generalization (Λα.e) and instantiation (e[τ̇]) annotations. Thus, the

problem of refinement type inference reduces to inferring appropriate refinements of the ML

types.

Templates Let K be a set of liquid type variables κ, used to represent unknown type refinement

predicates. A template T is a refinement type schema described via the grammar shown below,

where some of the refinement predicates are replaced with liquid type variables with pending

substitutions. A template environment is a map Γ from variables to templates.

θ ::= ε | [x 7→ v]; θ (Pending Substitutions)

T ::= S(φ ∪ θκ) (Templates)

Variables with Pending Substitutions A sequence of pending substitutions θ is defined using the

grammar above. To understand the need for θ, consider rule LT-APP from Figure 2.4, which

specifies that the type of a function application is obtained by substituting all occurrences of

the formal argument x in the output type of v1 with the actual expression v2 passed in at the

application. When generating the constraints, the output type of v1 is unknown and is represented

by a template containing liquid type variables. Suppose that the type of v1 is x : t → {ν : t | κ},
where κ is a liquid type variable. In this case, we will assign the application v1 v2 the type

{ν : t | κ[x 7→ v2]}, where κ[x 7→ v2] is a variable with a pending substitution [53]. Note that

substitution can be “pushed inside” type constructors, e.g., θ({κ1} → {κ2}) is the same as

{θκ1} → {θκ2} and so it suffices to apply the pending substitutions only to the root of the

template.

31

ConsGen(Γ, e) = match e with

| x → if HM(Shape(Γ), e) = t then ({ν : t | ν = x}, ∅) else (Γ(x), ∅)

| c→ (ConstType(c), ∅)

| v1 v2 →
let (x : Tx → T, C1) = ConsGen(Γ, v1)

let (T′x, C2) = ConsGen(Γ, v2)

(T[x 7→ v2], C1 ∪C2 ∪ {Γ ` T′x <: Tx})
| λx.e→

let x : Tx → T = Fresh(HM(Shape(Γ), λx.e))

let (T′, C) = ConsGen(Γ; x : Tx, e)

(x : Tx → T, C∪ {Γ � x : Tx → T} ∪ {Γ; x : Tx ` T′ <: T})
| if v then e2 else e3 →

let T = Fresh(HM(Shape(Γ), e))

let (, C1) = ConsGen(Γ, v)

let (T2, C2) = ConsGen(Γ; v, e2)

let (T3, C3) = ConsGen(Γ;¬v, e3)

(T, C1 ∪C2 ∪C3 ∪ {Γ � T}∪
{Γ; v ` T2 <: T} ∪ {Γ;¬v ` T3 <: T})

| let x = e1 in e2 →
let T = Fresh(HM(Shape(Γ), e))

let (T1, C1) = ConsGen(Γ, e1)

let (T2, C2) = ConsGen(Γ; x : T1, e2)

(T, C1 ∪C2 ∪ {Γ � T} ∪ {Γ; x : T1 ` T2 <: T})
| Λα.e→

let (T, C) = ConsGen(Γ, e)

(Λα.T, C)

| e[τ̇]→
let T = Fresh(τ̇)

let (Λα.T′, C) = ConsGen(Γ, e)

(T′[α 7→ T], C∪ {Γ � T})

Figure 2.5: Constraint Generation from λL Programs

2.3.2 Constraint Generation

We now describe how our algorithm generates constraints over templates by traversing

the expression in the syntax-directed manner of a type checker, generating fresh templates

32

Refine(C, A) = match C with

| Γ � {ν : t | θκ} → A[κ 7→ {q | q ∈ A(κ) and θq well-sorted in Shape(Γ); ν : t}]
| Γ ` {ν : t | p} <: {ν : t | θκ} → A[κ 7→ {q | q ∈ A(κ) and A(Γ) � A(p)⇒ θq}]
| → ⊥

Solve(C, A) =

if exists C ∈ C such that A(C) is not valid then Solve(C, Refine(C, A)) else A

Liquid(Γ, e, Q) =

let (T, C) = ConsGen(Γ, e)

let A = Solve(Split(C), λκ. QInst(Γ, e, Q))

A(T)

Figure 2.6: Liquid Type Inference Algorithm

for unknown types, constraints that capture the relationships between the types of various

subexpressions, and well-formedness requirements. The generated constraints are such that they

have a solution if and only if the expression has a valid liquid type derivation. Our inference

algorithm uses two kinds of constraints over templates.

Well-formedness Constraints Constraints of the form Γ � T, where Γ is template environment,

and T is a template, ensure that the types inferred for each subexpression are over program

variables that are in scope at that subexpression.

Subtyping Constraints Constraints of the form Γ ` T1 <: T2 where Γ is a template environment

and T1 and T2 are two templates of the same shape, ensure that the types inferred for each

subexpression can be combined using appropriate subsumption relationships to yield a valid

type derivation.

Our constraint generation algorithm, ConsGen, shown in Figure 2.5, takes as input a

template environment Γ and an expression e that we wish to infer the type of and returns as output

a pair of a type template T, which corresponds to the unknown type of e, and a set of constraints

C. Intuitively, ConsGen mirrors the type derivation rules and generates constraints C which

capture exactly the relationships that must hold between the templates of the subexpressions in

order for e to have a valid type derivation over Q. To understand how ConsGen works, notice

that the expressions of λL can be split into two classes: those whose types are constructible from

the environment and the types of subexpressions, and those whose types are not.

Expressions with Constructible Types The first class of expressions are variables, constants,

function applications and polymorphic generalizations, whose types can be immediately con-

33

structed from the types of subexpressions or the environment. For such expressions, ConsGen

recursively computes templates and constraints for the subexpressions and appropriately com-

bines them to form the template and constraints for the expression.

As an example, consider ConsGen(Γ, v1 v2). First, ConsGen is called recursively to

obtain the templates and constraints for the subexpressions v1 and v2. If a valid ML type

derivation exists, then v1 must be a function type with some formal x. The returned template is

the result of pushing the pending substitution of x with the actual argument v2 into the “leaves”

of the template corresponding to the return type of v1. The returned constraints are the union of

the constraints for the subexpressions and a subtyping constraint ensuring that the type of the

argument v2 is a subtype of the argument type of v1.

Expressions with Liquid Types The second class are expressions whose types cannot be derived

as above, as the subsumption rule is required to perform some kind of “over-approximation” of

their concrete semantics. These include λ-abstractions, if-then-else expressions, let-bindings, and

polymorphic instantiations (which includes recursive functions). We use two observations to

infer the types of these expressions. First, the shape of the refinement type is the same as the ML

type of the expression. Second, from the liquid type restriction, we know that the refinement

predicates for these expressions are conjunctions of logical qualifiers from Q? (see rules LT-LET,

LT-FUN, LT-IF, and LT-INST of Figure 2.4). Thus, to infer the types of these expressions, we

invoke HM to determine the ML type of the expression, use Fresh to generate a template with

the same shape as the ML type but with fresh liquid type variables representing the unknown

refinements, and generate subtyping constraints which are satisfied if and only if there is an

assignment to the predicate variables in the type template that makes the expression well-typed.

As an example, consider ConsGen(Γ, if v then e1 else e2). First, a fresh template is

generated using the ML type of the expression. Next, ConsGen recursively generates templates

and constraints for the then and else subexpressions. Note that, for the then subexpression, the

environment is extended with v, while, for the else subexpression, the environment is extended

with ¬v, as in the type derivation rule LT-IF from Figure 2.4. The fresh template is returned as

the template for the whole expression. The constraints returned are the union of those for the

subexpressions, a well-formedness constraint for the whole expression’s template, and subtyping

constraints forcing the templates for the then and else subexpressions to be subtypes of the

whole expression’s template.

Example Constraints The well-formedness constraint ∅ � x : {κx} → y : {κy} → κ1 is

generated for the fresh template for max from Figure 2.1. The constraint ensures that the inferred

type for max only contains program variables that are in scope at the point where max is bound.

The if expression that is the body of max is an expression with liquid type. For this expression, a

34

fresh template κ1′ is generated, and the subtyping constraints

x : {κx}; y : {κy}; x > y ` {ν = x} <: {κ1′}

x : {κx}; y : {κy};¬(x > y) ` {ν = y} <: {κ1′}

x : {κx}; y : {κy} ` {κ1′} <: {κ1}

are generated, capturing the relationships between the then and the if expression, the else

and the if expression, and the if and the output expression, respectively. (Constraints 1.1 and

1.2 are the above constraints, simplified for exposition.) The recursive application sum (k-1)

from Figure 2.1 is an expression with a constructible type. For this expression the subtyping

constraint 2.2 is generated, forcing the actual to be a subtype of the formal. The output of the

application, i.e., the output type κ2 of sum, with the pending substitution of the formal k with the

actual (k− 1) is shown bound to s in constraint 2.3.

2.3.3 Constraint Solving

Next, we describe our two-step algorithm for solving the constraints, i.e., assigning liquid

refinement predicates to all variables κ such that all constraints are satisfied. In the first step, the

algorithm uses the well-formedness and subtyping rules to split the complex constraints, which

may contain function types, into simple constraints over refinement predicate variables with

pending substitutions. In the second step, the algorithm computes a solution to the simplified

constraints by beginning with a trivial assignment, in which each refinement predicate variable

is assigned the conjunction of all logical qualifiers, and iteratively weakening the solution until it

find the least fixpoint solution for all the simplified constraints or determines that the constraints

have no solution. In the following, we formalize the notion of a solution and then describe the

two-step algorithm that computes solutions.

Satisfying Liquid Assignments A Liquid Assignment over Q is a map A from refinement predi-

cate variables κ to sets of qualifiers from Q?. Assignments can be lifted to maps from templates

T to refinement type schemas A(T) and template environments Γ to environments A(Γ), by

substituting each refinement predicate variable κ with
∧

A(κ) and then applying the pending

substitutions. The Liquid Assignment A satisfies a constraint C if A(C) is valid. That is, A satisfies

a well-formedness constraint Γ � T if A(Γ) � A(T), and a subtyping constraint Γ ` T1 <: T2 if

A(Γ) ` A(T1) <: A(T2). Liquid Assignment A is a solution for a set of constraints C if it satisfies

every constraint in C.

Step 1: Splitting into Simple Constraints. First, the algorithm calls Split, which uses the rules

for well-formedness and subtyping (Figure 2.4) to convert all the constraints over complex types

(e.g., function types) into simple constraints over base types. An assignment is a solution for C if

and only if it is a solution for Split(C).

35

Example: Splitting The well-formedness constraint ∅ � x : {κx} → y : {κy} → {κ1} splits

into the three simple constraints: ∅ � {κx}, x : {κx} � {κy} and x : {κx}; y : {κy} � {κ1}, which

ensure that: the parameter x must have a refinement over only constants and the value variable

ν, as the first constraint’s environment is empty; the parameter y must have a refinement over

only x and ν; and the output type’s refinement can refer to both parameters x, y and the value

variable. The function subtyping constraint generated by the call foldn (len a) 0 am (constraint

4.4) splits into the simple subtyping constraints 4.6, 4.7, and 4.8. Notice how substitution and

contravariance combine to cause the flow of the bounds information into input parameter {κl}
(constraint 4.6) thus allowing the system to statically check the array access.

Step 2: Iterative Weakening Due to the well-formedness constraints, any solution over Q must

map the liquid type variables to sets of qualifiers whose free variables are either the value

variable ν or the variables in the input environment Γ, written Vars(Γ), or the variables in the

input expression e, written Vars(e). That is, any solution maps the liquid variables to a set of

qualifiers contained in QInst(Γ, e, Q) which is defined as

{q | q ∈ Q? and FV(q) ⊆ {ν} ∪Vars(Γ) ∪Vars(e)}

where Vars(Γ) and Vars(e) are the set of variables in Γ and e, respectively. Notice that if Q is

finite, then QInst(Γ, e, Q) is also finite, as the placeholder variables can only be instantiated with

the finitely many variables from Γ and e. Thus, to solve the constraints, we call the procedure

Solve, shown in Figure 2.6, with the split constraints and a trivial initial assignment that maps

each liquid type variable to QInst(Γ, e, Q).

Solve repeatedly picks a constraint that is not satisfied by the current assignment and calls

Refine to remove the qualifiers that prevent the constraint from being satisfied. For unsatisfied

constraints of the form Γ � {ν : t | θκ}, Refine removes from the assignment for κ all the

qualifiers q such that θq (the result of applying the pending substitutions θ to q) would not

be well-sorted in the environment Shape(Γ); ν : t. For unsatisfied constraints of the form

Γ ` {ν : t | p} <: {ν : t | θκ}, where p is either a refinement predicate or a refinement

predicate variable with pending substitutions, Refine removes from the assignment for κ all

the logical qualifiers q such that the implication [[A(Γ)]] ∧ A(p)⇒ θq is not valid in EUFA. For

unsatisfied constraints of the form Γ ` {ν : t | p} <: {ν : t | φ}, Refine, and therefore Solve,

returns ⊥, indicating that the constraints have no solution, as there is no way to weaken p to

satisfy the constraint.

Correctness of Solve For two assignments A and A′, we say that A ≤ A′ if, for all κ, the set

of logical qualifiers A(κ) contains the set of logical qualifiers A′(κ). We can prove that if a set

of constraints has a solution over Q then it has a unique minimum solution with respect to ≤.

Intuitively, we invoke Solve with the least possible assignment that maps each liquid variable

to all the possible qualifiers. Solve then uses Refine to iteratively weaken the assignment until

36

the unique minimum solution is found. The correctness of Solve follows from the following

invariant about the iterative weakening: if A? is the minimum solution for the constraints,

then in each iteration, the current assignment A satisfies A ≤ A?. Thus, if Solve returns a

solution, then it must be the minimum solution for C over Q. If at some point a constraint

Γ ` {ν : t | p} <: {ν : t | φ} is unsatisfied, subsequent weakening cannot make it satisfied.

Thus, if Solve returns ⊥, then C has no solution over Q.

By combining the steps of constraint generation, splitting and solving, we obtain our

dependent type inference algorithm, Liquid, shown in Figure 2.6. The algorithm takes as input

an environment Γ, an expression e and a finite set of logical qualifiers Q, and determines whether

there exists a valid liquid type derivation over Q for e in the environment Γ. The correctness

properties of Liquid are stated in the theorem below, whose proof is in Appendix A. From

Theorems 1 and 2, we conclude that, if Liquid(∅, e, Q) = σ, then every primitive operation

invoked during the evaluation of e succeeds.

Theorem 2. Liquid Type Inference

1. Liquid(Γ, e, Q) terminates,

2. If Liquid(Γ, e, Q) = σ then Γ `Q e : σ, and,

3. If Liquid(Γ, e, Q) = ⊥ then there is no σ such that Γ `Q e : σ.

Running Time Most of the time taken by Liquid is spent in Solve, which asymptotically domi-

nates the time taken to generate constraints. Solve returns the same output regardless of the order

in which the constraints are processed; for efficiency, we implement Solve in two phases. First,

Solve makes a (linear) pass that solves the well-formedness constraints, thus rapidly pruning

away irrelevant qualifiers. Second, Solve uses a standard worklist-based algorithm that solves

the subtyping constraints. The time taken in the first phase is asymptotically dominated by

the time taken in the second. Let Q be the maximum number of qualifiers that any refinement

predicate variable is mapped to after the first well-formedness pass, V be the number of variables

in the program e that have a base type, and D be the size of the ML type derivation for e in

the environment Γ. A constraint is sent to Refine only when the antecedent of its implication

changes, i.e., at most V × Q times. There are at most O(D) constraints and so Refine is called

at most O(D×V × Q) times. Each call to Refine makes at most Q calls to the theorem prover.

Thus, in all the running time of Liquid is O(D × V × Q2) assuming each theorem prover call

takes unit time. Of course, D can be exponential in the program size (but tends to be linear in

practice), and the size of each theorem prover query is O(V ×Q). Though validity checking in

EUFA is NP-Hard, several solvers for this theory exist which are very efficient for the simple

queries that arise in our context [28, 33].

37

2.3.4 Features of Liquid Type Inference

We now discuss some features of the inference algorithm.

1. Type Variables and Polymorphism There are two kinds of type variables used during

inference: ML type variables α obtained from the ML types returned by HM, and refinement

predicate variables κ introduced during liquid constraint generation to stand for unknown

liquid refinement predicates. Our system is monomorphic in the refinement predicate variables.

Polymorphism only enters via the ML type variables as fresh liquid type variables are created at

each point where an ML type variable α is instantiated with a monomorphic ML type.

2. Whole Program Analysis and Non-General Types Due to the above, the types we ob-

tain for function inputs are the strongest liquid supertype of all the arguments passed into

the function. This is in contrast with ML type inference, which infers the most general type

of the function independent of how the function is used. For example, consider the func-

tion neg defined as fun x -> (-x), and suppose that Q = {0 ≤ ν, 0 ≥ ν}. In a program

comprising only the above function, i.e., where the function is never passed arguments, our

algorithm infers neg : {0 ≤ ν ∧ 0 ≥ ν} → {0 ≤ ν ∧ 0 ≥ ν} which is useless but sound. If

neg is only called with (provably) non-negative arguments, the algorithm infers the type

neg : {0 ≤ ν} → {0 ≥ ν}, while if neg is only called with (provably) non-positive arguments,

the algorithm infers the type neg : {0 ≥ ν} → {0 ≤ ν}. If neg is called with arbitrary argu-

ments, the algorithm infers neg : int → int and not a more general intersection of function

types. We found this design choice greatly simplified the inference procedure by avoiding

expensive “case splits” on all possible inputs [41] while still allowing us to prove the safety

of challenging benchmarks. Moreover, we can represent the intersection type in our system

as: x : int → {(0 ≤ x⇒ 0 ≥ ν) ∧ (0 ≥ x⇒ 0 ≤ ν)}, and so, if needed, we can recover the

precision of intersection types by using qualifiers containing implications.

3. A-Normalization Recall the sum example from section 2.1. Our system as described would

fail to infer that the output type of

let rec sum k = if k < 0 then 0 else (s + sum (k-1))

was non-negative, as it cannot use the fact that sum (k-1) is non-negative when inferring the

type of the else expression. This is solved by A-Normalizing[38] the program so that intermediate

subexpressions are bound to temporary variables, thus allowing us to use information about

types of intermediate expressions, as in the original sum implementation.

38

2.4 Implementation and Evaluation

To validate the utility of the liquid types refinement type inference technique as applied

to high-level, functional programming languages, we have built DSOLVE, which infers liquid

types for OCaml programs. While refinement types can be used to statically prove a variety

of properties, as shown by Kawaguchi et al. [52], Bengtson et al. [7], and Dunfield [31], among

others, in our evaluation we focus on the canonical problem of proving the safety of array

accesses. We use a diverse set of challenging benchmarks that were previously annotated in

the DML project [83] to demonstrate that DSOLVE, together with a simple set of array bounds

checking qualifiers, can prove safety completely automatically for many programs. For the few

programs where these bounds checking qualifiers are insufficient, the programmer typically

only needs to specify one or two extra qualifiers. Even in these rare cases, the refinement types

DSOLVE infers using only the bounds checking qualifiers help the programmer to rapidly identify

the relevant extra qualifiers. We show that, over all the benchmarks, DSOLVE reduces the manual

annotation required to prove safety from 17%, by number of lines, to under 1%. Finally, we

describe a case study where DSOLVE was able to pinpoint an error in an open source OCaml bit

vector library implementation, in a function that contained an explicit, but insufficient, safety

check.

2.4.1 DSOLVE: Liquid Types for OCaml

We begin with a description of our implementation of liquid type inference in the tool

DSOLVE, which infers liquid types for OCaml programs.

Architecture DSOLVE is built on top of OCaml: DSOLVE uses the OCaml parser and type

inference engine to implement the oracle HM, and uses OCaml’s facilities for outputting type

annotations that can be viewed by the user using an external tool. Type inference in DSOLVE is

divided into the following three phases: First, the OCaml compiler’s parser and type checker

are used to translate the input program to a typed AST; this phase also parses the module’s

refinement type specification. Second, the typed AST is traversed to generate a set of subtyping

constraints over templates that represent the potentially-unknown refinement types of the

program expressions. Third, the constraints are solved using predicate abstraction over a finite

set of predicates generated from user-provided logical qualifiers. This pass uses the Z3 SMT

solver [28] to discharge logical implications corresponding to the subtyping constraints. If the

constraints can be satisfied, the program is deemed safe. Otherwise, DSOLVE reports a type error

and the lines in the original source program that yielded the unsatisfiable constraints.

DSOLVE is conservative: if an error is reported, it may be because the program is unsafe,

or because the set of qualifiers provided was insufficient, or because the invariants needed to

prove safety cannot be expressed within our refinement type system.

39

Input DSOLVE takes as input a source (.ml) file containing an OCaml program, an interface

(.mlq) file containing a refinement type specification for the interface functions of the .ml file, and

a qualifier (.hquals) file containing a set of logical qualifiers. DSOLVE combines the qualifiers

from the .hquals file with some scraped from the specification .mlq file and a standard qualifier

library to obtain the set of logical qualifiers used to infer liquid types.

Output DSOLVE produces as output a refinement type for each program expression in a standard

OCaml type annotation (.annot) file. The user can view the inferred refinement types using

standard tools like Emacs, Vim, and Caml2HTML. If all the constraints are satisfied, the program

is reported as safe. Otherwise, DSOLVE outputs warnings indicating the potentially unsafe

expressions in the program.

Modular Checking DSOLVE verifies one module at a time. If a module depends on another

module, it can be checked against that module’s .mlq file; the other module’s source code is not

required.

Abstract Modules It is possible to create a .mlq file which defines types, axioms (background

predicates), and uninterpreted functions, without a corresponding .ml file. Such “abstract

modules” allow the user to extend DSOLVE with reasoning about mathematical structures which

do not appear directly in the program. For example, an abstract module Set.mlq might contain

a type which represents a polymorphic set collection, along with an appropriate refined interface

and axioms which build a set theory. This set theory can be used in another module’s type

refinements; for example, it may be used in a sorting module to verify that the sets of elements in

the input and output lists of a sorting function are equal.

2.4.2 Benchmark Results

To show the real-world applicability of the liquid types approach, we applied DSolve

to a number of benchmarks from the DML project [82] (ported to OCaml) that were previously

annotated with dependent types with the goal of statically proving the safety of array accesses

[83]. The benchmarks are listed in the first column of Table 2.1. The second column indicates the

size of the benchmark (ignoring comments and whitespace). The benchmarks include OCaml

implementations of the Simplex algorithm for linear programming (simplex), the fast Fourier

transform (fft), Gaussian elimination (gauss), matrix multiplication (matmult), binary search

in a sorted array (bsearch), computing the dot product of two vectors (dotprod), insertion

sort (isort), the n-queens problem (queen), the Towers of Hanoi problem (tower), a fast byte

copy routine (bcopy), and heap sort (heapsort). The above include all DML array benchmarks

except quicksort, whose invariants remain unclear to us. In addition, we ran DSOLVE on a

simplified Quicksort routine from OCaml’s Sort module (qsort-o), a version ported from the

40

Table 2.1: Experimental Results: LOC is the number of lines of program text (without
annotation) after removing whitespace and comments from the code. DML is the number of
lines of manual annotation required in the DML versions of the benchmarks. DSOLVE is the

amount of manual annotation required by DSOLVE, i.e., number of lines of qualifiers not in QBC.
Time is the time taken by DSOLVE to infer refinement types.

Program LOC DML (LOC) DSOLVE (LOC) Time (s)
dotprod 7 3 (30%) 0% 0.31
bcopy 8 3 (27%) 0% 0.15
bsearch 24 3 (11%) 0% 0.46
queen 30 7 (19%) 0% 0.70
isort 33 12 (27%) 0% 0.88
tower 36 8 (18%) 1 (2%) 3.33
matmult 43 10 (19%) 0% 1.79
heapsort 84 11 (12%) 0% 0.53
fft 107 13 (11%) 1 (1%) 9.13
simplex 118 33 (22%) 0% 7.73
gauss 142 22 (13%) 1 (1%) 3.17
TOTAL 633 125 (17%) 3(1%)
qsort-o 62 0 (0%) 1.89
qsort-d 112 5 (5%) 18.28
bitv 426 65 (15%) 63.11

DML benchmark (qsort-d) where one optimization is removed, and BITV, an open source bit

vector library (bitv).

Array Bounds Checking Qualifiers To automate static array bounds checking with DSOLVE,

we observe that the safety of array accesses typically depends on the relative ordering of integer

expressions. Thus, to statically prove the safety of array accesses, we use the mechanically-

generated set of array bounds checking qualifiers QBC defined as

QBC , {ν ./ X | ./∈ {<,≤,=, 6=,>,≥} ∧ X ∈ {0, ?, len ?}}.

Next, we show experimental results demonstrating that liquid type inference over QBC suffices

to prove the safety of most array accesses. Even when DSOLVE needs extra qualifiers, the types

inferred using QBC help the programmer quickly identify the relevant extra qualifiers.

Array Bounds Checking Results As shown in column DSOLVE of Table 2.1, DSOLVE needs no

manual annotations for most programs; that is, the qualifiers QBC suffice to automatically prove

the safety of all array accesses. For some of the examples, e.g., tower, we do need to provide extra

qualifiers. However, even in this case, the annotation burden is typically just a few qualifiers. For

example, in tower, we require a qualifier which is analogous to ν = n− h1− h2, which describes

the height of the “third” tower, capturing the invariant that the height is the total number of rings

n minus the rings in the first two towers. Similarly, in bitv, one qualifier states the key invariant

41

relating a bit vector’s length to the length the underlying data structure used to store the bit

vector, an array of integers. The time for inference is robust to the number of qualifiers, as most

qualifiers are pruned away by the well-formedness constraints. In our prototype implementation,

the time taken for inference is reasonable even for non-trivial benchmarks like simplex, fft and

gauss.

Case Study: Bit Vectors We applied DSOLVE to verify the open source BITV bit vector library

(version 0.6). A bit vector in BITV consists of a record with two fields: length, the number of

bits stored, and bits, the actual data, stored within an array of integers. If b is the number of bits

stored per array element, length and bits are related by

(len bits− 1) · b < length ≤ (len bits) · b.

The executed code, and hence refinement types, are different for 32- and 64-bit machines. Thus,

to verify the code using our conjunctive types, we fixed the word size to 32 bits. We were able to

verify the array safety of 58 of BITV’s 65 bit vector creation, manipulation, and iteration functions,

which contain a total of 30 array access operations.

There are three kinds of manual annotation needed for verification: extra qualifiers (14

lines), trusted assumptions (8 lines), and interface specifications (43 lines). The trusted assumptions

(which are akin to dynamic checks) are needed due to current limitations of our system. These

include the conservative way in which modular arithmetic is embedded into EUFA, the lack of

refinements for type variables and recursive datatypes, and the conservative handling of control

flow. The interface specifications are needed because BITV is a library, i.e., an open program.

Thus, for verification, we need to specify that the API functions are called with valid input

vectors that satisfy invariants like the one described above. The interface specifications, by far

the largest category of annotations, are unavoidable. The extra qualifiers and expressiveness

limitations are directions for future work.

DSOLVE was able to locate a serious bounds checking error in BITV. The error occurs in

BITV’s blit function, which copies c bits from v1, starting at bit offset1, to v2, starting at bit

offset2. This function first checks that the arguments passed are safe, and then calls a fast but

unsafe internal function, unsafe blit:

let blit v1 offset1 v2 offset2 c =

if c < 0 || offset1 < 0 || offset1 + c > v1.length

offset2 < 0 || offset2 + c > v2.length

then invalid_arg "Bitv.blit";

unsafe_blit v1.bits offset1 v2.bits offset2 c

unsafe blit immediately accesses the bit at offset1 in v1, regardless of the value of c. When

the parameters are such that: offset1 = v1.length and v1.length mod b = 0 and c = 0,

42

unsafe blit attempts to access the bit at index v1.length, which must be located in

v1.bits[v1.length / b];

but this is

v1.bits[len v1.bits],

which is out of bounds and can cause a crash, as we verified with a simple input. The problem

is that blit does not verify that the starting offset is within the bounds of the bit vectors.

This is fixed by adding the test offset1 >= v1.length (and offset2 >= v2.length for similar

reasons). DSOLVE successfully type checks the corrected version.

Acknowledgements

This chapter contains material adapted from the following publications:

Patrick Rondon, Ming Kawaguchi, Ranjit Jhala. “Liquid Types”, Proceedings of the 2008

ACM SIGPLAN conference on Programming Language Design and Implementation (PLDI), pages

159–169, 2008.

Ming Kawaguchi, Patrick Rondon, Ranjit Jhala. “DSolve: Safety Verification via Liquid

Types”, Proceedings of Computer Aided Verification 2010 (CAV), pages 123–126, 2010.

Chapter 3

Low-Level Liquid Types

Static verification is a crucial last line of defense at the lowest levels of the software stack,

as at those levels we cannot fall back on dynamic mechanisms to protect against bugs, crashes, or

malicious attacks. Recent years have seen significant progress on automatic static verification

tools for systems software. These tools employ abstract interpretation [9, 50] or software model

checking [5, 46, 12, 85] to infer path-sensitive invariants over program variables like status

flags and counters and thereby verify control-sensitive safety properties. Unfortunately, these

approaches have been proven insufficient for verifying data-sensitive properties of values stored

in lists, trees, etc., as this requires the precise inference of invariants of data values stored within

unbounded collections of heap-allocated cells.

In the previous chapter, we introduced liquid types, a refinement type system for OCaml

that marries the ability of OCaml types to infer coarse invariants of data structures (and higher-

order functions) with the ability of predicate abstraction and SMT solvers to infer path-sensitive

invariants of individual variables. We demonstrated that this symbiotic combination enables

the highly automated verification of complex data-sensitive properties of high-level, functional

programs. Unfortunately, the very nature of low-level, imperative code, typically written in C,

makes the translation of the liquid types program verification strategy to the setting of systems

software verification extremely challenging.

Lack of Types First, due to the presence of casts and pointer arithmetic, low-level systems code

is essentially untyped: C’s type system is designed only to allow the compiler to determine the

number of bytes that should be read or written by each instruction, and hence, unlike the type

systems of higher-level languages, C’s types provide no invariants about data values.

Mutation Second, mutation makes the very notion of type refinement problematic. The key

idea in refinement types is to adorn the basic underlying types with refinement predicates over

program variables. For example, in an OCaml program, the refinement type {ν : int | x < ν}

43

44

describes an integer that is greater than the program variable x. However, this type is meaningless

if the value of x can change over time.

Unbounded Collections Third, even if we could meaningfully track mutation, we cannot always

uniquely identify the object being mutated. In particular, the presence of unbounded collections

means that we must represent many elements of a collection by a single type. This makes it

impossible to strongly update the type of an element in the collection, creating a major loss of

precision in the presence of the temporary invariant violations common in low-level programs.

In this chapter, we develop low-level liquid types, a static refinement type system for C that

enables the precise verification and inference of data-sensitive properties of low-level software.

Low-level liquid types tackles the above challenges via a three-tiered design.

First, low-level liquid types is founded on a new physical type system that classifies

values and heaps. A value is either a datum of a given size, e.g., a 4-byte integer or a 1-byte

character, or a reference corresponding to a pair of a heap location and an offset within the location.

Intuitively, an offset corresponds to a field (respectively, cell) of the structure (respectively, array)

resident at the location. A heap is a map from locations to a sequence of offset-value bindings

that define the contents of the given location. By precisely tracking arithmetic on offsets, physical

types provide coarse invariants about the basic shapes of data values.

Second, each physical type is refined with a predicate that captures precise properties

of the values defined by the type. Low-level liquid types makes a clear separation between

immutable state, which is tracked using a traditional type environment, and mutable state, which

is tracked in a flow-sensitive heap. We ensure soundness by restricting the refinements to pure

predicates that refer only to immutable values. Of course, in C all entities are mutable. We

recover precision for stack-allocated variables by first carrying out an SSA renaming, which

creates different (immutable) versions of each variable at different program points.

Third, we recover precision for heap-allocated locations by using the physical type

information to strongly update the types of the heap’s contents on writes through pointers. Since

such strong updates are unsound when several physical heap locations are represented by a

single type, low-level liquid types distinguishes between abstract locations which summarize

a collection of physical memory locations and concrete locations which describe exactly one

physical memory location. Low-level liquid types enables strong updates by enforcing the

requirement that all pointer reads and writes are to concrete locations, and by employing two

mechanisms to account for aliasing, which we explain via a version control metaphor. The

unfold operation “checks out” a concrete reference to a particular location from the set described

by an abstract location, obtaining a pointer to a single run-time location whose type may be

strongly updated soundly. The dual to the unfold operation, fold, “commits” the changes made

to the particular location back into the abstract location after ensuring that the particular location

satisfies the invariants of the abstract location. Together, the automatically-inserted fold and

45

unfold annotations ensure that the invariants for an abstract location soundly apply to all the

elements that correspond to that location, while simultaneously allowing strong updates. This

is crucial, as strong updates are essential for both establishing invariants in spite of field-at-a-

time, incremental object initialization and reasoning in spite of the temporary violations of the

invariants that are ubiquitous in low-level code.

To demonstrate the utility of low-level liquid types, we have implemented our type

system in CSOLVE, a prototype static verifier for C. CSOLVE takes as input a C program and a set

of logical predicate templates and returns as output the inferred refinement types of functions,

local variables, and heap contents, along with a report of any type errors that occurred. Through a

set of challenging case studies, we show how the combination of types and predicate abstraction

enables the precise, path-sensitive verification and inference of control-sensitive properties

of individual variables and data-sensitive properties of aggregate structures manipulated in

low-level programs.

3.1 Overview

We begin with a high-level overview of low-level liquid types, and then, via a sequence

of examples, we illustrate how they enable the precise static verification and inference of program

invariants in the presence of challenging low-level programming constructs, including pointer

arithmetic, memory allocation, temporary invariant violations, aliasing, and unbounded data

structures.

3.1.1 Physical and Refinement Types and Heaps

We begin our overview of the low-level liquid types system by explaining the physical

base types that our system uses to represent data in low-level programs. We then explain how

these types are combined into heap types that represent the contents of the mutable run-time

store. Finally, we explain how refinement and liquid types and heaps are formed.

Physical Types Our system is based on a physical type system for C where every program

variable is either a basic data value of some size, e.g., a 4-byte integer, denoted by int, or a reference

comprising a location and an index within the location, denoted by ref(`, i), where ` is the location

and i the index within the location. For the purposes of this section, an index is either a natural

number n, which is a singleton offset used to model pointers to specific fields of a structure, or of

the form n+m, which is a sequence of offsets {n + km}∞
k=0 used to model pointers into an array

of items, each of size m, that starts at offset n. Thus, ref(`, 4) is a (possibly null) pointer that

refers to a location ` at (field) offset 4, while ref(`, 0+4) is a (possibly null) pointer that refers to a

location within an array of 4-byte integers.

46

Heaps To ensure the soundness of types in the presence of mutation, our representation of the

program state is partitioned into an environment, which is a standard sequence of type bindings

for immutable variables, and a heap, which is a mapping from locations ` to a set of index-type

pairs that describe the contents of the location, called a block. For example, the heap

`1 7→ 0 : int, 4 : int

`2 7→ 0+1 : char

has two locations. The first, `1, contains a structure with two integer fields, one at offset 0 and

one at offset 4. The second, `2, contains an array of one-byte characters (denoted char).

Refinement Types and Heaps In low-level liquid types, as in the liquid types system of the

previous chapter, program invariants are captured via refinement types, denoted by {ν : t | φ},
where t is the physical type being refined, ν is a special value variable that denotes the value being

described, and φ is the refinement predicate, a logical predicate containing the value variable. A

refinement heap is a heap where each location is mapped to a sequence of offset-refinement-type

pairs. For example, `1 7→ 0 : {ν : int | 0 ≤ ν} is a heap with a location `1 which contains a

non-negative integer at offset 0.

Liquid Types The definitions of logical qualifiers and liquid types were given in section 2.1; we

review them here for convenience. A logical qualifier is a Boolean-valued expression over the

program variables, the value variable ν, and a placeholder variable ?. We say that a qualifier q

matches the qualifier q′ if replacing some subset of the free variables in q with ? yields q′. For

example, the qualifier ν ≤ x + y matches the qualifier ν ≤ ?+ ?. We write Q? for the set of all

qualifiers not containing ? that match some qualifier in Q. In the rest of this section, let Q be the

set

{0 ≤ ν, ν = ?+ ?, ν = BBegin(ν), BBegin(ν) = BBegin(?), BEnd(ν) = BBegin(ν) + ?}.

The terms BBegin(·) and BEnd(·) are uninterpreted function applications denoting the start and

end addresses of memory blocks; we will explain these shortly. A liquid type over Q (abbreviated

to just liquid type) is a refinement type where the refinement predicates are conjunctions of

qualifiers from Q?. Our system enables inference by requiring that the certain entities, e.g.,

loop-modified variables, functions, and blocks in aggregate structures, have liquid types.

3.1.2 Low-Level Liquid Types By Example

In the following, we give a high-level, example-driven overview of how low-level liquid

types is used to infer properties of low-level programs that manipulate stack-allocated scalar

data, in-heap array data, and unbounded heap data structures.

47

char *make_string (int n) {

char *res;

char *str;

1: if (n < 0) return NULL;

2: res = (char *) malloc (n * sizeof (char));

3: str = res;

4: for (int i = 0; i < n; i++) {

5: *str++ = ’\0’;

}

6: return res;

}

Figure 3.1: Example: make string

Local Invariants

We begin by showing how our system uses local refinement types for individual program

variables to verify the safety of the pointer dereferences in the make string function shown in

Figure 3.1. The function takes an integer parameter n, allocates a new block of memory of size n,

iterates over the block using str to initialize it, and returns a reference, res, to the start of the

block.

Physical Types First, we describe the physical types computed for each variable. The function

calls malloc to create a new heap location `1 and returns a pointer to the location with offset 0.

Thus, res gets the physical type ref(`1, 0). str is initialized with res, but is updated inside the

loop with an increment of 1. Hence, res gets assigned the physical type ref(`1, 0+1). The loop

index i gets the physical type int.

Pointer Allocation and Arithmetic To specify when it is safe to dereference a pointer, we refine

the output type of malloc so that it contains information about the size of the allocated block. In

particular, in our system malloc returns a value of type

{ν : ref(`, 0) | BLen(ν, n)}

where n is the size argument passed to malloc and BLen is the following block length predicate:

BLen(ν, n) , BBegin(ν) = ν ∧ BEnd(ν) = ν +p n

The refinement states that the return value is equal to the start of the allocated region in which it

points, denoted BBegin(ν), and that the end of the allocated region, denoted BEnd(ν), is n bytes

from the beginning; the operator +p represents pointer arithmetic in our refinement logic. We

48

typedef struct {

int len;

char *str;

} string;

string *new_string (int n, char c) {

string *s;

char *str;

0: if (n < 0) return NULL;

1: s = (string *) malloc (sizeof (string));

2: s->len = n;

3: str = make_string (n);

4: s->str = str;

5: init_string (s,c);

return s;

}

void init_string (string *s, char c) {

for (int i = 0; i < s->len; i++) {

s->str[i] = c;

}

}

Figure 3.2: Example: new string

adopt a logical model of memory where allocated blocks are considered to be infinitely far apart.

Finally, to specify the safety of pointer dereferences, we stipulate that whenever a pointer x is

dereferenced for reading or writing, it has the bounds-safe type

{ν : ref(`, 0+1) | BBegin(ν) ≤ ν ∧ ν < BEnd(ν)}.

Safety Verification To verify that the pointer dereference on line 5 is safe, we must verify that str

has the bounds-safe type; this will require determining that str = res+p i. This is challenging

for a type system, as both str and i are mutated by the loop. Our system addresses this problem

by using SSA renaming to compute different types for the different versions of mutated variables.

In the sequel, let xj be the SSA name of x at line j. Thus, from the malloc at line 2 our system

deduces that res2 has type

{ν : ref(`1, 0) | BLen(ν, n)}, (a)

49

typedef struct _slist {

struct _slist *next;

string *s;

} slist;

slist *new_strings (int n) {

string *s;

slist *sl, *t;

1: sl = NULL;

2: for (int i = 1; i < n; i++) {

3: s = (string *) malloc (sizeof (string));

4: s->len = i;

5: s->str = make_string (i);

6: t = (slist *) malloc (sizeof (slist));

7: t->s = s

8: t->next = sl;

9: sl = t;

}

return sl;

}

Figure 3.3: Example: new strings

i.e., that res is a pointer to the start of a new location `1 whose size is n bytes. This same type is

assigned to str3. Next, our system uses liquid type inference over the qualifiers Q to infer that,

at line 5, i5 and str5 have the respective types

{ν : int | 0 ≤ ν < n}

{ν : ref(`1, 0+1) | ν = res2 +p i5}.

Notice that these types are loop invariants. They hold the first time around the loop as initially i

is 0 and str is equal to res. The types are inductive invariants, as each loop iteration increments

i and res. Thus, our system uses liquid type inference to combine the above facts with (a) and

deduce that at line 5

BBegin(str5) ≤ str5 ∧ str5 < BEnd(str5),

i.e., that str5 has the bounds-safe type and hence the pointer dereferences at line 5 of make string

are safe.

Function Types Finally, note that make string returns the pointer res (i.e., res2) on line 6. Thus,

using the type from (a) and the fact that the location `1 was freshly generated via malloc, our

50

system concludes that make string has the type:

∀`1.(n : int)/∅→ {ν : ref(`1, 0) | BLen(ν, n)}/`1 7→ 0+1 : char (b)

That is, the function takes an integer n and an empty heap (that is, the function does not touch

any pre-existing heap contents) and returns a pointer to the start of a new char array of size n.

Heap-block Invariants

Next, we show how our system uses refinements to verify safety properties of blocks of

data residing in the heap. Consider the new string function shown in Figure 3.2. This function

takes a parameter, n, and produces a string structure representing a string of length n. The

string structure has two fields: len, the length of the string, and str, a pointer to the contents

of the string. The programmer intends that the fields obey the following two invariants:

(I1) the len field is non-negative, and

(I2) the str field points to a char array of size len.

Note that these invariants do not hold at all points during the lifetime of the structure; instead,

the programmer establishes them on lines 1-4, and then calls the procedure init string to fill

in the string with the supplied character c.

Next, we show how our system precisely tracks updates to the structure, tolerating the

early stages in which the invariant does not hold, in order to verify the safety of the pointer

dereferences within init string.

First, the malloc in line 1 creates a new location on the heap, `2, and gives s the type

ref(`2, 0), stating that it points into this location at offset 0. Initially, this location contains an

8-byte block (the size of the string structure), and so at line 2 the heap is

`2 7→ uninitialized 8-byte block .

In line 2, we assign n to the len field of s, which creates a new binding in the heap for `2 at the

offset corresponding to the field len, namely 0, since len is the first element of the structure.

Thus, at line 3 the heap is

`2 7→ 0 : {ν : int | ν = n}, uninitialized 4-byte block.

Next, in line 3, the call to make string creates a new location and assigns to str a pointer to the

new location, with the type shown in (b) (and (a)). Thus, at line 4 the heap contains two locations

`1 7→ 0+1 : char

`2 7→ 0 : {ν : int | ν = n}, uninitialized 4-byte block.

51

In line 4, the value of str is assigned to s->str, which creates a binding at the corresponding

offset in `2, namely 4, as the first field, len, was an int which is 4 bytes long. Thus, at line 5 the

heap is

`1 7→ 0+1 : char

`2 7→ 0 : {ν : int | ν = n}, 4 : {ν : ref(`1, 0) | ν = str}.

Finally, at line 5 we have the call to init string. At the callsite, our system uses the qualifiers in

Q, and the type of str to infer that the previously shown heap binding for `2 is subsumed by

`2 7→ 0 : {ν : int | ν = n}, 4 : {ν : ref(`1, 0) | BLen(ν, n)}.

As the value at offset 0 equals n, the above block is subsumed by

`2 7→ 0 : {ν : int | ν = n}, 4 : {ν : ref(`1, 0) | BLen(ν, @0)},

where n is replaced by @0, a name that denotes the value within the same block at offset 0. Finally,

our system uses the test at line 0 to deduce that n is non-negative at the callsite, so init string

is called with the heap h defined as

h , `2 7→ 0 : {ν : int | 0 ≤ ν}, 4 : {ν : ref(`1, 0) | BLen(ν, @0)},

`1 7→ 0+1 : char.

Note that, as the len field of a string structure is located at offset 0 and its str field is located

at offset 4, the bindings for `2 capture exactly the structure invariants I1, I2 intended by the

programmer. Moreover, even though the invariants don’t hold everywhere, our system is able to

use strong updates to establish them at function call boundaries. Thus, our system infers that the

function init string has the type

∀`1, `2.(s : ref(`2, 0))/h→ void/h,

and, via reasoning analogous to that for make string, our system verifies the safety of array

accesses in init string.

Data Structure Invariants

In new string, s pointed to exactly one heap location, `1, throughout the execution

of the function. Thus, we could soundly perform strong updates to the block describing the

contents of `1; this allowed us to determine that the strings built by new string satisfied the

desired invariants. Unfortunately, we cannot soundly use strong updates when dealing with

collections of locations.

52

Consider the function new strings shown in Figure 3.3. This function takes an integer

parameter, n, and creates a list of strings of lengths from 1 to n, all of which satisfy the invariants

I1, I2. This is accomplished by looping from 1 to n, allocating memory for a new string and

assigning the pointer to this memory to s (line 3), initializing it as in new string (lines 4,5), and

inserting s into a list of strings (lines 6,7,8).

Note that s points to many different concrete locations over the course of executing the

function; this is in contrast to the previous functions, in which pointers only pointed to a single

concrete location while the function was executed. We formalize this distinction by saying that s

points to an abstract location
∼
` . That is, in our system, s has the physical type ref(

∼
` , 0), which

states that it refers to the offset 0 within one of many possible locations.

Observe that it is not sound to perform strong updates to an abstract location’s type. To

see why, suppose that we had strongly updated
∼
` as we did when analyzing new string. Then

we would assign
∼
` a block type as follows:

∼
` 7→ 0 : {ν : int | ν = i}, . . .

The problem with this type is that every string has a different length, and the above type only

ascribes a single length, i, to all strings. Thus, while we need strong updates to establish the

desired invariants for each string, we clearly cannot soundly perform strong updates on the

types of abstract locations.

We solve this problem with the following crucial observation. Suppose that the code

uses a pointer s to access a collection of locations
∼
` . As long as we do not modify s or use other

pointers to
∼
` , only one particular concrete location from the set represented by

∼
` can be modified

at a time. Thus, when a pointer to
∼
` is first used, we can unfold the abstract location into a fresh

concrete location, `j, which inherits
∼
` ’s invariant. As long as

∼
` is only accessed by a pointer to `j,

we can soundly perform strong updates on `j’s type. However, as soon as another pointer to
∼
` is

used, the possibility of aliasing means we can no longer rely on `j’s type to be accurate. Thus,

before we access an abstract location via another pointer of type
∼
` , we fold the concrete location `j

back into the collection by verifying that `j satisfies
∼
` ’s invariants and removing it from the heap.

The other pointer then gets its own unfolded copy of the location, and can strongly update it,

until it gets folded back into the collection, and so on. Our system automatically places folds and

unfolds in the code in a manner that ensures that: (1) every heap access occurs via a reference

to a concrete location, and (2) every abstract location has at most one corresponding concrete

location unfolded in the heap at any point in time. In this way, our system can soundly establish

invariants about unbounded data structures in spite of temporary invariant violation even in the

presence of aliasing.

We now illustrate the above mechanism using the code in Figure 3.3. We will say that,

within the body of the loop, s points to some concrete location, `j, which is an instance of
∼
` . We

will use strong updates, as in the previous examples, to verify that `j has the desired invariants,

53

i.e., that

`j 7→ 0 : {ν : int | 0 ≤ ν}, 4 : {ν : ref(`2, 0) | BLen(ν, @0)}.

Finally, at the end of the loop — i.e., before we access another pointer into
∼
` in the next iteration

— we fold the concrete location `j into the collection by ensuring that it satisfies
∼
` ’s invariants,

i.e, by stipulating that at the end of of the loop, the block `j is a subtype of the block
∼
` . In this

manner, our system performs strong updates locally and infers using Q that at the end of the

new strings, the heap is of the form

∼
` 7→ 0 : ref(

∼
` , 0), 4 : ref(

∼
`1, 0)

∼
`1 7→ 0 : {ν : int | 0 ≤ ν}, 4 : {ν : ref(

∼
`2, 0) | BLen(ν, @0)}

∼
`2 7→ 0+1 : char.

Thus, our system infers that the function returns a list (
∼
`) of pointers to string structures (`1)

each of which satisfy invariants I1 and I2.

This concludes our overview of low-level liquid types. Next we formalize our core

language and static type system (section 3.2). We then describe our experimental evaluation via

a set of challenging case studies (section 3.5). The operational semantics of our core language

appears in Appendix B, while a proof that our type system is sound with respect to the semantics

is given in Appendix C.

3.2 The NANOC Language and Type System

In this section, we present the syntax and types of NANOC, a simple C-like language

with integers and pointers, then present its type checking judgments.

3.2.1 Syntax

The syntax of NANOC is shown in Figure 3.4. We give an overview of the language’s

features below.

Values The set of NANOC values includes variables and integer constants. Integer constants

have the form n|w|, where w is the size, in bytes, of the value and n is the numerical integer value.

When it does not cause ambiguity, we will sometimes write 0 for the constant 0|W|, where W is

the length in bytes of a machine word. (Throughout this dissertation, we often assume a machine

word is 4 bytes long for illustrative purposes; this does not reflect a limitation of our system.)

Pure Expressions We distinguish the pure expressions of NANOC, which do not access the heap,

from its potentially impure expressions. The pure expressions of NANOC, denoted by a, include

54

v ::= Values

x variable

| n|w| integer

a ::= Pure Expressions

v value

| v1 ◦ v2 arithmetic operation

| v1 +p v2 pointer arithmetic

| v1 ./ v2 relation

e ::= Expressions

a pure expression

| ∗nv heap read of n bytes

| ∗v1 := v2 heap write

| if v then e1 else e2 if-then-else

| f (v)[` f 7→ `] function call

| malloc(v) memory allocation

| let x = e1 in e2 let binding

| letu x = unfold v in e location unfold

| fold ` location fold

F ::= f (xi) { e } Function Declarations

P ::= F e Programs

Figure 3.4: Syntax of NANOC programs

values, integer and pointer arithmetic expressions, and integer and pointer comparisons. We use

the symbol ◦ to stand for the arithmetic operators +, ∗, and /, and the symbol +p to denote the

binary operation that adds an integer offset to a pointer value. We use the symbol ./ to stand for

the Boolean-valued binary relations <, ≤, =, 6=, ≥, and >. NANOC uses the C convention that

nonzero values represent truth and all other values represent falsehood.

Expressions The impure expressions of NANOC, denoted by e, include the pure expressions,

as well as if-then-else expressions, let bindings, reads from and writes to memory, memory

allocation, location folding and unfolding, and function calls. Note that all bindings are to

immutable variables — all mutation is factored into the heap. Next, we examine location

55

unfolding and folding and function calls in more detail.

Location Fold and Unfold Our goal is to verify invariants of in-memory data structures. These

invariants are represented as types associated with abstract heap locations, each of which may

represent several concrete (actual, run-time) heap locations. Verifying properties of the data at

these abstract locations in the presence of temporary invariant violation would seem to require

performing strong updates on the types of abstract locations. Unfortunately, this would be

unsound, since a single abstract location can represent several concrete locations.

However, at run-time a reference will only point to a single concrete location at a time.

Thus, operations on abstract locations through a single reference will only affect a single concrete

location. Intuitively, if we can get access to this concrete location, we can soundly perform strong

updates on it.

Our intuition follows a version control metaphor. Before using a pointer, we can “check

out a copy” of its abstract location, giving a concrete location for the pointer which has the same

type as the abstract location — a “working copy”. As long as the abstract location is accessed

only through this pointer to the working copy, it will be sound to perform strong updates on the

type of the new concrete location. Finally, if it becomes necessary to use another pointer to the

same abstract location, we “check in” the concrete location by checking that it satisfies the same

invariant as the corresponding abstract location. The concrete location is then discarded so that

no further modification can be made to the working copy.

The “check out” operation is implemented via the letu x = unfold v in e construct,

where v is a reference to abstract location
∼
` . The expression creates a new concrete location

corresponding to
∼
` ; a reference to this new location is bound to x in e. The “check in” operation

is implemented via the fold ` expression, which verifies that the concrete location corresponding

to
∼
` satisfies the same invariant as

∼
` . These procedures and the distinction between abstract

and concrete locations are discussed in more detail in the context of their static typing rules in

section 3.2.

Function Calls The expression f (x)[` f 7→ `] calls function f with parameters x, and instantiates

the quantified locations ` f in f ’s type with the locations `. We discuss function calls in more

detail in section 3.2.

Programs A NANOC program, denoted by P, is a sequence of function definitions followed

by an expression. The program is evaluated by evaluating the expression using the provided

function definitions.

3.2.2 Types

The syntax of NANOC types is shown in Figure 3.5. NANOC has a system of refined

base types, τ, dependent heaps, h, and dependent function schemas, σ.

56

t ::= Base Types

int(n, i) integer

| ref(`, i) pointer

τ ::= {ν : t | φ} Refinement Types

i ::= Indices

n constant

| [l, u]cm bounded congruence class

b ::= i : τ Blocks

` ::= Heap Locations
∼
` abstract location

| `j concrete location

h ::= Heap Types

∅ empty heap

| h ∗ ` 7→ b extended heap

σ ::= (xi : τ)/h1 → τ/h2 Function Schemes

Figure 3.5: Syntax of NANOC types

Locations and References The NANOC locations, `, denote areas of the heap. We use
∼
` to denote

an abstract location; abstract locations cannot be read from or written to. We use `j to denote a

concrete location; only concrete locations can be read from or written to. Every concrete location `j

corresponds to some abstract location
∼
` , and we require for soundness that there is at most one

concrete location corresponding to a particular abstract location at any given program point. We

call references to abstract locations abstract references and references to concrete locations concrete

references. We refer to the ` of an abstract location
∼
` or concrete location `j as the location’s name.

When it is unambiguous from the context, we will simply use ` to refer to the base name of either

an abstract location
∼
` or concrete location `j.

Indices The integer and reference types of NANOC make use of indices, i, which are a shorthand

notation for single integers and bounded congruence classes of integers. The index n represents

57

the singleton set {n}. The index [l, u]cm represents the sequence of integers

{k | l ≤ k ≤ u ∧ k ≡ c mod m},

where: l < u; 0 < m; l, u ≡ c mod m; and 0 ≤ c < m. We use the notation n+m as shorthand for

the index [n, ∞]n mod m
m :

n+m = [n, ∞]n mod m
m

= {k | n ≤ k ≤ ∞ ∧ k ≡ n mod m}.

We use the notation > as shorthand for [−∞, ∞]01:

> = [−∞, ∞]01

= {k | −∞ ≤ k ≤ ∞ ∧ k ≡ 0 mod 1}

= Z.

We refer to indices of the form n as singleton indices, and all other indices as sequence indices.

We use i+ as a metavariable representing a sequence index. We write [[i]] for the set of integers

represented by index i.

Base Types The base types, t, of NANOC include integer and reference types. We use int(w, i)

to denote the type of w-byte integers n such that n ∈ [[i]]. We use ref(`, i) to denote the type of

references to location ` at an offset n ∈ [[i]] within that location.

Refined Types As in the previous chapter, a refined type, τ, has the form {ν : t | φ}, where t is

a base type and φ is the refinement predicate. As before, we take as our language of refinement

predicates the quantifier-free formulas in the (decidable) theory of equality, linear arithmetic and

uninterpreted functions (EUFA).

Our refinement logic is augmented with expressions of the form @n. When the expression

@n is used in the refinement type of a value stored in the heap, the expression refers to the value

stored at index @n within the same heap location. Thus, this expression form allows our type

system to express dependencies between the fields of a heap-allocated structure.

We use the following type abbreviations: int abbreviates int(W,>), char abbreviates

int(1,>), and void abbreviates int(0, 0). As before, when it is unambiguous from the context,

we use t to abbreviate the type {ν : t | true}. Similarly, when the base type t is clear from the

context, we use {φ} to abbreviate {ν : t | φ}.

Blocks A block type, b, statically represents the contents of a run-time heap location. The types

of the block’s contents at various offsets are given by bindings i : τ which state that the values at

the offsets in i have the type τ. Within a block, no two index bindings may overlap.

58

Heaps A heap type, h, represents the contents of the run-time heap, giving a block type to each

location in the heap. The contents of heap location ` are given by a binding to a block b, written

` 7→ b. We can form the concatenation of two heaps h1 and h2 as h1 ∗ h2; the resulting heap

contains all bindings present in either h1 or h2. Our heaps enjoy the following properties: (1) no

location may be bound twice in a heap, (2) every abstract location in the heap has at most one

corresponding concrete location in the heap, and (3) every concrete location in the heap has

exactly one corresponding abstract location in the heap. We say that a run-time store satisfies

a heap type if every value in the heap has the type specified by the corresponding heap type

binding.

Function Schemas We combine refined base types and heap types to form dependent function

schemas σ. A dependent function schema consists of an input and output portion. The input

portion of a dependent function is a pair (xi : τi)/h of a dependent tuple giving the parameter

types and the input heap, i.e., the heap contents required to call the function. The output portion

of a dependent function is a pair τ/h, called a world, containing the return type of the function

and the output heap, i.e., the heap contents after the function returns. The types in the output

world of a dependent function type may refer to variables bound in the input tuple.

Since functions can take reference parameters, they may operate on arbitrary heap

locations. Thus, we assume that all function schemas are implicitly quantified over the names of

their heap locations.

3.2.3 Typing Rules

In this section, we give the refinement type checking rules of and discuss liquid type

inference for NANOC. We begin with a description of NANOC’s type environments, rules for

type well-formedness, and subtyping. We then discuss several of the most interesting typing

rules.

Environments Our typing rules make use of two types of environments: local environments

and global environments. A local environment, Γ, is a sequence of type bindings x : τ and guard

predicates φ. The former are standard; guard predicates capture the results of conditional guards

under which an expression is evaluated. A global environment, G, is a sequence of bindings f : σ

mapping functions to their type schemas.

We assume that suitable renaming has been performed so that no name is bound twice

in an environment. An environment is well-formed if each bound type is well-formed in the

prefix of the environment that precedes the binding.

Γ ::= ε | x : τ; Γ | φ; Γ (Local Environment)

G ::= ε | f : σ; G (Global Environment)

59

Type Well-Formedness Γ � τ

φ well-sorted in Γ; ν : t

Γ � {ν : t | φ}
WF-TYPE

Dependent Block Well-Formedness Γ �@ b

DisjointOffsets(n : τ, b)

x /∈ Γ, FV(τj) Γ � τ Γ, x : τ �@ b[@n 7→ x]

Γ �@ n : τ, b
WF-DBLOCK-SINGLE

Γ � i+j : τj

Γ �@ i+j : τj

WF-DBLOCK-SEQUENCE

Non-Dependent Block Well-Formedness Γ � b

DisjointOffsets(ij : τj) ∀j.Γ � τj

Γ � ij : τj

WF-NDBLOCK

Heap Type Well-Formedness Γ � h

Γ � ∅
WF-HEMPTY

Γ � h0
∼
` /∈ dom(h0) Γ �@ b

Γ � h0 ∗
∼
` 7→ b

WF-HABSTRACT

Γ � h0 Γ � b
∼
`∈ dom(h0) `k /∈ dom(h0)

Γ � h0 ∗ `j 7→ b
WF-HCONCRETE

Γ � τ Γ � h

Γ � τ/h
WF-WORLD

Function Schema Well-Formedness � σ

Γ = xi : τi Γ � τi Γ � h1 Γ � τ/h2 τi, h1, τ, h2 abstract

� (xi : τi)/h1 → τ/h2

WF-FUNSCHEME

Figure 3.6: Well-formedness rules for NANOC

60

Well-Formedness Judgments The judgments of Figure 3.6 ensure that types, heaps, worlds, and

function type schemas are well-formed in local environments Γ and heaps h. A type is well-formed

in a local environment Γ if its refinement predicate φ is a well-sorted Boolean formula in Γ.

A block is well-formed if no two index bindings overlap and each type is well-formed

with respect to the local environment and preceding indices. We distinguish between concrete

blocks, bound to concrete heap locations, which must have refinements over immutable variables

bound in the environment, and abstract blocks, bound to abstract heap locations, which have

refinements which may additionally use offset names (e.g., @0) to refer to values at other offsets

within the block. We disallow offset names in the refinements for concrete blocks for two reasons.

First, they are unnecessary, as we can use names bound in the environment to precisely describe

a particular location. Second, they are problematic, as the values at the offsets can be changed by

strong updates, thus invalidating the refinements.

To ensure that no block bindings overlap, the block well-formedness rules make use

of an auxiliary function, DisjointOffsets, which determines whether all the bindings in a block

refer to disjoint offsets within the block. Before we can define DisjointOffsets, we must first

define a function, OffsetsOf, which returns the block offsets occupied by a particular binding.

Formally, the function OffsetsOf(i, τ) yields the set of sets of offsets occupied by a value of type

τ located at offsets k ∈ [[i]], where each set represents the offsets occupied by the contiguous

bytes of a value starting at some offset k. For example, OffsetsOf(0, int(4, 0)) produces the

set {{0, 1, 2, 3}}, i.e., the set of offsets occupied by a 4-byte integer located at offset 0. As

another example, OffsetsOf(0+4, int(4, 0)) produces the set {{0, 1, 2, 3}, {4, 5, 6, 7}, . . .}. Finally,

the function DisjointOffsets is defined as:

DisjointOffsets(ij : τj) = ∀S, T ∈
⊎

j
OffsetsOf(ij, τj). S∩T = ∅,

where] is the multiset union operator — we must use multiset rather than traditional union

because, if two bindings were to map to the same set of indices, the traditional union would keep

only a single copy of that set of indices, and DisjointOffsets would thus not be able to detect the

overlap.

A heap is well-formed if each block is well-formed, no location is bound twice, each

abstract location has at most one corresponding concrete location, and each concrete location

has a corresponding abstract location. Note that we check the well-formedness of blocks bound

to abstract and concrete locations using separate well-formedness rules; only blocks bound to

abstract locations are allowed to contain types with dependent field references.

A function schema is well-formed if all parameters are well-formed with respect to

the previous parameters and the input heap, the input heap is well-formed with respect to the

parameters, and the output world is also well-formed with respect to the parameters.

Subtyping Judgments The subtyping judgments of NANOC are shown in Figure 3.7. The rules

61

Base Subtyping Γ ` τ1 <: τ2

i1
∼
⊆ i2 Γ � φ1 ⇒ φ2

Γ ` {ν : int(w, i1) | φ1} <: {ν : int(w, i2) | φ2}
<:-INT

i1
∼
⊆ i2 Γ � φ1 ⇒ φ2

Γ ` {ν : ref(`, i1) | φ1} <: {ν : ref(`, i2) | φ2}
<:-REF

Γ ` {ν : ref(`j, i) | φ} <: {ν : ref(
∼
` , i) | φ}

<:-ABSTRACT

Γ ` {ν : int(W, 0) | ν = 0} <: {ν : ref(`, i) | ν = 0}
<:-NULL

Γ ` τ1 <: τ2 Γ ` τ2 <: τ3

Γ ` τ1 <: τ3

<:-TRANS

Block Subtyping Γ ` b1 <: b2

Γ ` τ1 <: τ2 x /∈ Γ Γ; x : τ1 ` b1[@n 7→ x] <: b2[@n 7→ x]

Γ ` n : τ1, b1 <: n : τ2, b2

<:-SINGLE

Γ ` τ1 <: τ2 Γ ` b1 <: b2

Γ ` i+ : τ1, b1 <: i+ : τ2, b2

<:-SEQUENCE

Heap Subtyping Γ ` h1 <: h2

Γ ` ∅ <: ∅
<:-EMPTY-HEAP

Γ ` b1 <: b2 Γ ` h1 <: h2

Γ ` h1 ∗ ` 7→ b1 <: h2 ∗ ` 7→ b2

<:-HEAP

World Subtyping Γ ` τ1/h1 <: τ2/h2

Γ ` τ1 <: τ2 Γ ` h1 <: h2

Γ ` τ1/h1 <: τ2/h2

<:-WORLD

Figure 3.7: Subtyping rules for NANOC

62

Subindex Relationship i1
∼
⊆ i2

n
∼
⊆ n

n
∼
⊆ [l, u]cm if l ≤ n ≤ u, n ≡ c mod m

[l1, u1]
c1
m1

∼
⊆ [l2, u2]

c2
m2

if l2 ≤ l1, u1 ≤ u2, m2 | m1, c1 ≡ c2 mod m2

Figure 3.8: Subindex relation

use set-theoretic inclusion checks between arithmetic sequences represented by indices and

logical implication checks over the refinement predicates. As in the previous chapter, we embed

environments into the refinement logic as follows:

[[Γ]] ≡
∧
{φ | φ ∈ Γ} ∧

∧
{φ[ν 7→ x] | x : {ν : t | φ} ∈ Γ}.

Most of the rules in Figure 3.7 are straightforward. Rule <:-NULL is used to coerce

the integer value 0|W| into an arbitrary pointer type, allowing the use of null pointers. Rule

<:-ABSTRACT allows a concrete pointer to be treated as abstract. The rules for subtyping integers

and pointers, <:-INT and <:-REF, make use of the index subsumption relationship,
∼
⊆, defined in

Figure 3.8.

Pure Typing Judgments The typing judgments for pure expressions are shown in Figure 3.9. The

rules are quite standard [71, 35, 75, 7]. Note that the refinement predicates for these expressions

precisely track the value of the expression.

The rules T-ARITH and T-PTRARITH use index operators
∼◦ and

∼
+, which are binary op-

erations on indices which approximate arithmetic operations. The definitions of these operations

are given in Figure 3.10; in the case of the commutative operators
∼
+ and

∼· , we only show one

argument order for each definition. We note that our logic’s pointer arithmetic operator, +p,

satisfies the following two laws, so that adding an offset to a pointer always yields a pointer into

the same block:

BBegin(v1 +p v2) = BBegin(v1)

BEnd(v1 +p v2) = BEnd(v1)

Typing Judgments The typing judgments for expressions and programs are shown in Figure 3.11,

Figure 3.12, and Figure 3.13. The program typing rules are straightforward. The expression

typing judgment G, Γ, h ` e : τ/h′ states that, in global environment G and local environment Γ,

if the heap initially satisfies heap type h, then evaluating e produces a value of type τ and a heap

63

Pure Typing Rules Γ ` a : τ

Γ(x) = {ν : t | φ}

Γ ` x : {ν : t | ν = x}
T-VAR

Γ ` n|w| : {ν : int(w, n) | ν = n|w|}
T-INT

Γ ` a1 : int(n, i1) Γ ` a2 : int(n, i2)

Γ ` a1 ◦ a2 : {ν : int(n, i1
∼◦ i2) | ν = a1 ◦ a2}

T-ARITH

Γ ` a1 : ref(`, i1) Γ ` a2 : int(W, i2)

Γ ` a1 +p a2 : {ν : ref(`, i1
∼
+ i2) | ν = a1 +p a2}

T-PTRARITH

Γ ` a1 : τ Γ ` a2 : τ

Γ ` a1 ./ a2 : {ν : int(W, [0, 1]01) | if a1 ./ a2 then ν = 1|W| else ν = 0|W|}
T-RELATION

Γ ` a : τ1 Γ ` τ1 <: τ2 Γ � τ2

Γ ` a : τ2

T-PURESUB

Figure 3.9: Typing rules for pure NANOC expressions

satisfying h′. The majority of the rules are straightforward; the most interesting rules are those

that deal with memory access.

Type Checking Memory Operations

Below, we discuss the rules for memory allocation, heap operations, function calls, and

location unfolding. The key idea that enables our system to verify and infer invariants about

in-memory data structures in the presence of temporary invariant violation is our distinction

between concrete locations and abstract locations. Thus, to better understand the rules for memory

operations, we begin with a more thorough description of abstract and concrete locations.

Concrete Locations Concrete locations are names that refer to exactly one physical memory

location. For example, a single item in a linked list has one physical location and thus can be

identified with a concrete location. The block bound to a concrete location describes the current

state of the contents of exactly one physical location.

Abstract Locations Abstract locations are names that refer to zero or more concrete locations. For

example, all items in a linked list may share the same abstract location, although each item is at a

different concrete location. The block bound to an abstract location is an invariant that applies to

all elements which share that abstract location.

64

Index Addition i1
∼
+ i2

n
∼
+ m = n + m

n
∼
+ [l, u]cm = [l + n, u + n]c+n mod m

m

[l1, u1]
c1
m1

∼
+ [l2, u2]

c2
m2 = [l1 + l2, u1 + u2]

0
gcd(m1,m2,c1,c2)

Index Multiplication i1
∼· i2

n
∼· m = nm

n
∼· [l, u]cm = [nl, nu]nc

nm

i+1
∼· i+2 = [−∞, ∞]01

Index Division i1
∼
/ i2

n
∼
/ m = n/m if m 6= 0

i
∼
/ i = [−∞, ∞]01

Figure 3.10: Index arithmetic operators

Since we wish to verify data structure invariants in spite of temporary invariant violation,

we will allow memory to be accessed only through concrete locations. This will enable our type

system to perform strong updates to the types of concrete locations, providing robustness with

respect to temporary invariant violation. Because we wish to verify properties of unbounded

collections, which are represented using abstract locations, we need a strategy to handle pointers

to abstract locations.

Strategy for Collections We employ a two-pronged strategy for handling pointers to abstract

locations, and thereby collections. First, as long as only a single pointer to an abstract location is

used, we can be assured that only one corresponding concrete location is being accessed. We

will use our location unfold operation to obtain a concrete location corresponding to a pointer’s

referent. As long as the abstract location is only accessed through this “unfolded” pointer, we

can safely perform strong updates on the new concrete location. Second, if we must use another

pointer to access the abstract location, we can no longer be assured that a single concrete location

will be updated. When this happens, we will use the location fold operation to ensure that the

contents of the concrete location created earlier meet the abstract location’s invariant, disallow

further use of the unfolded pointer (without another unfold), and allow the new pointer to be

soundly unfolded.

65

Standard Typing Rules G, Γ, h ` e : τ/h2

Γ ` a : τ

G, Γ, h ` a : τ/h
T-PURE

G, Γ, h ` e : τ1/h1 Γ ` τ1/h1 <: τ2/h2 Γ � τ2/h2

G, Γ, h ` e : τ2/h2

T-SUB

Γ ` v : int(W, i) G, Γ; v 6= 0, h ` e1 : τ̂/ĥ′ G, Γ; v = 0, h ` e2 : τ̂/ĥ′

G, Γ, h ` if v then e1 else e2 : τ̂/ĥ′
T-IF

G, Γ, h ` e1 : τ1/h1 G, Γ; x : τ1, h1 ` e2 : τ̂2/ĥ2 Γ � τ̂2/ĥ2

G, Γ, h ` let x = e1 in e2 : τ̂2/ĥ2

T-LET

Figure 3.11: Typing rules for standard NANOC expressions

In the following, we describe the typing rules for the key operations of location unfolding

and folding and demonstrate how they allow us to soundly perform strong updates. We then

describe the remaining heap-accessing operations: memory allocation, heap read and write, and

function calls.

Unfolding The expression letu x = unfold v in e, which “acquires” a concrete pointer to the

location
∼
` that v points to, is typed by rule T-UNFOLD. The rule first type checks v in Γ to

determine where it points. The block b bound to this location is located in the initial heap, h, to

find the invariant satisfied by the abstract location. With some modification, this same block is

bound to a new concrete location, `j, to ensure that this concrete location initially satisfies the

same invariants as the abstract location did.

The modification consists of a sequence of substitutions. The block b may contain types

which reference previous elements by their indices (i.e., may contain types containing names

like @i). Such types only have meaning in the context of the block where the indices are bound;

if these types are extracted from the block — by typing a read operation, for example — they

will be meaningless, since the indices are not bound to types in the environment. To give these

types meaning outside of the block, we create fresh variable names xi for each sequence index

i and extend the environment with appropriately-substituted bindings for these names. Each

concrete location has a “selfified” refinement stating that the value at each index i is equal to the

corresponding name xi. Note that sequence indices are not bound to selfified types, because a

sequence index binding represents multiple data values.

Finally, a pointer to `j is bound to x in the body e. Well-formedness checks ensure that

no other concrete location corresponding to
∼
` exists and that the new bindings do not escape the

66

Heap Read/Write Typing Rules G, Γ, h ` e : τ/h2

Γ ` v : {ν : ref(`j, i) | Safe(ν, n)} h = h1 ∗ `j 7→ . . . , i : τ, . . . SizeOf(τ) = n

G, Γ, h ` ∗nv : τ/h
T-READ

h = h1 ∗ `j 7→ . . . , n : τ1, . . . Γ ` v1 : {ν : ref(`j, n) | Safe(ν, SizeOf(τ2))}
Γ ` v2 : τ2 SizeOf(τ2) = SizeOf(τ1) h′ = h1 ∗ `j 7→ . . . , n : τ2, . . .

G, Γ, h ` ∗v1 := v2 : void/h′
T-SUPD

Γ ` v1 : {ν : ref(`j, n+m) | Safe(ν, SizeOf(τ̂2))}
Γ ` v2 : τ̂ h = h1 ∗ `j 7→ . . . , n+m : τ̂, . . .

G, Γ, h ` ∗v1 := v2 : void/h
T-WUPD

Figure 3.12: Typing rules for NANOC heap reads and writes

scope of the body.

Note that the pointer being unfolded must be non-null. Because null pointers are treated

as references to arbitrary, possibly uninhabited, abstract locations with arbitrary invariants,

allowing a null pointer to be unfolded would allow the introduction of arbitrary predicates into

the environment, leading to unsoundness. By allowing only non-null pointers to be unfolded, we

ensure that we only unfold pointers to concrete locations which had previously been allocated,

initialized, and folded. Such pointers are guaranteed to genuinely satisfy the invariants of their

corresponding abstract locations and so there is no risk of unsoundness in unfolding them.

Folding The expression fold `, which “releases” the concrete location currently assigned to
∼
` , is

typed by rule T-FOLD. The rule uses subtyping to check that the concrete location `j satisfies

the invariant specified by its corresponding abstract location
∼
` and removes concrete location `j

from the output heap, preventing further use of pointers to `j.

Memory Allocation The expression malloc(v) is typed by rule T-MALLOC, which creates a

new concrete location corresponding to newly-allocated memory. The new concrete location

corresponds to abstract location
∼
` , which is mapped to block b, giving the desired invariant for

the new concrete location. This invariant is not yet established for the concrete location, which

represents freshly-allocated memory; thus, the concrete location is mapped to b0, defined as

67

Γ ` v : {ν : ref(
∼
` , iy) | ν 6= 0} h = h0 ∗

∼
` 7→ nk : τk, i+ : τ+

xk disjoint xk /∈ Γ, e, FV(h) θ = [@nk 7→ xk]

Γ1 = Γ; xk : θτk `j fresh h1 = h ∗ `j 7→ nk : {ν = xk}, i+ : θτ+

G, Γ1; x : {ν : ref(`j, iy) | ν = v}, h1 ` e : τ̂2/ĥ2 Γ1 � h1 Γ � τ̂2/ĥ2

G, Γ, h ` letu x = unfold v in e : τ̂2/ĥ2

T-UNFOLD

h = h0 ∗
∼
` 7→ b̂1 ∗ `j 7→ b2 Γ ` b2 <: b̂1

G, Γ, h ` fold ` : void/h0 ∗
∼
` 7→ b̂1

T-FOLD

Γ � hm Γ � hu G(f) = (xj : τj)/h f → τ′/h′f
θ = [xj 7→ vj][` f 7→ `] Γ � hu ∗ θh f Γ ` vj : θτj Γ ` hm <: θh f

G, Γ, hu ∗ hm ` f (vj)[` f 7→ `] : θτ′/hu ∗ θh′f
T-CALL

`j fresh h = h0 ∗
∼
` 7→ b Γ � h ∗ `j 7→ b Γ ` v : {ν : int(W, i) | ν ≥ 0}

G, Γ, h ` malloc(v) : {ν : ref(`j, 0) | Allocated(ν, v)}/h ∗ `j 7→ b0
T-MALLOC

Figure 3.13: Non-standard typing rules for NANOC expressions

follows:

(n : {ν : int(w, i) | φ}, b)0 = n : {ν : int(w, 0) | ν = 0|w|}, b0

(n : {ν : ref(`, i) | φ}, b)0 = n : {ν : ref(
∼
` , 0) | ν = 0}, b0

(i+ : {ν : int(w, i) | φ}, b)0
= i+ : {ν : int(w, i t 0) | φ ∨ ν = 0|w|}, b0

(i+ : {ν : ref(`, i) | φ}, b)0
= i+ : {ν : ref(

∼
` , i t 0) | φ ∨ ν = 0}, b0

Thus, b0 is the type of a block with the same shape as b, where all the contents are set to zero.

(Note that we change the types of arrays to indicate that their values are either zero or satisfy the

refinement predicate specified in b. If we did not use disjunction here, it would only be possible

to write zeroes into freshly-allocated arrays, which is sound but useless.) The expression returns

a reference to the beginning of the concrete location (index 0). The refinement on the returned

reference states that the reference is a non-null pointer to the start of a block of size v; we denote

this with the abbreviation Allocated, defined as

Allocated(v1, v2) , v1 6= 0∧ BLen(v1, v2).

The uniqueness of concrete location bindings within the heap is ensured using heap

well-formedness; i.e., if there is an active concrete location corresponding to the abstract location

being allocated, it must be “folded up” before malloc is invoked.

68

Pointer Read The expression ∗nv, which reads n bytes from the address pointed to by v, is typed

by rule T-READ. This rule ensures that the pointer is safe, i.e., that v is non-null and points to a

region which contains at least n bytes. This is ensured by requiring that v satisfies the predicate

Safe(v, n), defined as

Safe(v, n) , v 6= 0∧ BBegin(v) ≤ v ∧ v + n ≤ BEnd(v).

If v is non-null and within bounds, the type of the read is given by the type bound in the heap

at the reference’s location, index pair. The rule additionally ensures that the dereference reads

exactly one value — that is, that it does not read part of a single value or a single value plus part

of another; this is ensured using the SizeOf type operator, defined in Appendix B. The heap is

left unaltered.

Pointer Write The expression ∗v1 := v2 is typed by rules T-SUPD and T-WUPD. If the reference’s

type identifies exactly one location within a block — i.e., it has a singleton index n — the rule

T-SUPD can be used to return a new, strongly-updated heap where the type of the referent has

been updated to the type of the value being assigned. We require that the value written through

the reference has the same size as the value that was previously at that location; this ensures that

the block type remains well-formed after the strong update.

If the reference’s type only indicates that it potentially points to one of several locations

within a block — i.e., it has a sequence index n+m — a strong update is unsound; in this case, the

rule T-WUPD is used to ensure that the new value has the same type as the previous value. Note

that we could introduce fold and unfold operations on arrays to allow strong updates to array

elements, but we eschew this for simplicity. Both rules ensure that the dereferenced pointer is

safe.

Function Call The expression f (vj)[` f 7→ `] is typed by rule T-CALL, which is inspired by the

modular “footprint”-based frame rule from separation logic. This rule splits the initial heap

into two portions: hm, the portion of the heap which is modified by the function, and hu, the

portion of the heap which is left unmodified by the function. To ensure soundness, we check

that hm and hu are individually well-formed; this prevents placing a concrete location in hu

and its corresponding abstract location in hm, allowing the function to unsoundly unfold an

already-unfolded location. The rule also generates a substitution mapping formal (location)

parameters to actual (location) parameters. This substitution is used to check that the actual

parameters and heap are subtypes of the formal parameters and heap. The result of the call is the

return type and the function’s output heap, both with the actual parameters substituted for the

formals. The resultant output heap is joined with the unmodified portion of the input heap to

obtain the caller’s heap after the function returns.

Program Typing Programs are typed using rules T-FUN and T-MAIN. Rule T-FUN is used to

type function definitions, and is straightforward.

69

Program Typing G ` P : τ/h

� σ̂

σ̂ = (xj : τ̂j)/ĥ → τ̂′/ĥ′ G; f : σ̂, e, xj : τ̂j, ĥ ` e : τ̂′/ĥ′ G; f : σ̂ ` P : τp/hp

G ` f (xj) { e } P : τp/hp

[T-FUN]

h abstract G, ∅, h ` e : τ/h′

G ` e : τ/h′
T-MAIN

Figure 3.14: Program Typing

Rule T-MAIN, which type checks the expression that makes up the “main” function of

the program, ensures the initial heap contains only abstract locations: since at the beginning

of execution no locations have been allocated and no invariants established, the initial heap

cannot contain concrete locations. It may, however, contain abstract locations, since they need

not describe the contents of any concrete locations.

3.3 Data Structure Verification with Final Fields

While the system presented so far is adept at specifying, verifying, and inferring invari-

ants that express relationships between local variables or between two fields of one structure,

it cannot express invariants which relate fields in one structure to fields in another, different

structure, and thus cannot express or verify properties of linked, mutable data structures.

To understand why, consider expressing the following invariant as a type:

p->size = p->next->size

We might consider a naı̈ve approach which would give p a type which says that it is a reference

to a location ` of type

` 7→ size : int, next : {ν : ref(`, 0) | ν->size = size},

which says that the value obtained by dereferencing the next pointer to obtain its size field

yields a value equal to the size field of the current structure, p. However, giving p such a type

would be unsound if the value of its size field can change as the program executes. Nonetheless,

if we are to verify the safety and correctness of realistic programs, we must be able to reason

about inter-link invariants like this one.

In this section, we augment our type system to express and verify such precise inter-link

invariants of mutable linked data structures. To do so, we wish to retain the expressive power af-

forded by allowing dereferences inside type refinements while avoiding the unsoundness usually

70

associated with them. Our key observation is that the problem with allowing references inside

refinement predicates is uncontrolled mutation: in our example, at any point in the program, the

size field of either structure may change, invalidating the refinement and causing unsoundness.

If, however, we can be sure that the size field is immutable after the current program point, it is

completely safe to allow dereferences that access size within refinements. We call such fields

final, and our type system soundly allows refinement predicates to contain dereferences to such

final fields.

This extension considerably increases the expressiveness of our type system. For exam-

ple, our system is able to use flow- and path-sensitive reasoning, along with the refinements

expressible using final fields, to determine automatically that library code which destructively

updates lists in order to add or remove elements maintains the lists’ sortedness invariants.

3.3.1 Final Fields Example: Memory Allocation

We now illustrate by example how the addition of final fields to our system enables the

verification and inference of invariants of mutable linked data structures.

Figure 3.15 shows an implementation of a malloc-like memory manager whose free list

is divided into allocation “pools” of type pool which consist of an allocation size and the free list

for that size, which is a linked list of region structures, each of which consists of an 8-byte header

containing the region’s size and link to the next free region, followed by an array of characters

containing the allocated memory itself. The pools themselves are linked together in a list in

increasing order of allocation size.

Link Invariants We begin by verifying that each pointer produced by new region points to the

mem field of an allocated location which contains exactly as many bytes as specified by the region

header, plus space for the header itself. Ideally, we would give the return value the type

{ν : ref(`, 8) | ν = BBegin(ν) + 8∧ BEnd(ν) = ν + ∗BBegin(ν)}.

Note the term ∗BBegin(ν) dereferences the pointer to access its size field. Thus, this type states

that the return value is a pointer to the mem field (eighth byte) of its location and that the end of

the block comes size bytes beyond the referenced location. Unfortunately, it is not generally

sound to use dereferences in types; if the size field of the returned structure is mutated at any

point, the refinement may be invalidated, and the type system will be unsound.

Final Fields On the other hand, a straightforward analysis of the program shows that, after its

initialization on line 6, the size field of the returned structure is never mutated. We say that such

a field is final, and note that it is sound for refinements to dereference such fields so long as they

remain final. In refinement predicates, we syntactically distinguish dereferences to final fields

from dereferences to potentially mutable fields by writing references to final fields as !v.

71

struct region {

int size;

region *next;

char mem [0];

};

struct free_pool {

int size;

region *free;

free_pool *next;

};

// Assume fl is initialized and non -null

free_pool *fl = ...;

void init (int size , char *m) {

1: while (size --)

2: *m++ = 0;

}

char *new_region (int sz) {

3: region *r =

(region *) sbrk (sizeof (*r) + sz);

4: init (sz, &r->mem);

5: r->next = NULL;

6: r->size = sz;

7: return &r->mem;

}

char *pool_alloc (free_pool *p) {

8: if (p->free) {

9: region *r = p->free;

10: p->free = r->next;

11: return &r->mem;

}

12: return new_region (p->size);

}

char *alloc (int size) {

13: if (size <= 0) return NULL;

14: free_pool *p;

15: for (p = fl;

16: p->size < size && p->next != NULL;

17: p = p->next) ;

18: if (p->size >= size) return pool_alloc (p);

19: free_pool *np =

(free_pool *) sbrk (sizeof (*np));

20: np->size = 2 * p->size;

21: np->free = NULL;

22: np->next = NULL;

23: p->next = np;

24: return pool_alloc (np);

}

void dealloc (char *mem) {

25: if (mem == NULL) return;

26: region *r = (region *) mem - 1;

27: init (r->size , &r->mem);

28: free_pool *p = fl;

29: while (p->size != r->size) {

30: p = p->next;

31: if (p == NULL) return;

}

32: r->next = p->free;

33: p->free = r;

}

Figure 3.15: Final fields example: memory management

We now return to new region. At line 3, the function calls sbrk to expand the heap,

returning a pointer to the beginning of a new location `j. From the refined type of sbrk and the

fact that sizeof (region) is 8, we have that r’s type is

r : {ν : ref(`j, 0) | Allocated(ν, 8 + sz)}.

Line 4 initializes the mem field, i.e., the data block returned to the user. Line 5 initializes the next

field to NULL.

72

Line 6 initializes the size field to the requested size, sz. This is the final assignment

made to the size field for the lifetime of this structure; thus, after this point, the size field is

final. Our analysis will soundly introduce the assumption

!r = sz

into the environment when type checking the remainder of the function, reflecting the immutable

value of r’s size field.

We compute the type of the returned pointer as

&r->mem : {ν : ref(`j, 8) | ν = r+p 8}.

Together, this type, the assumption !r = sz, and the type of r allow our system to deduce that

BEnd(&r->mem) = &r->mem + ! BBegin(&r->mem).

By subsumption, then, we are able to give the return value of new region the type

{ν : ref(
∼
` , 8) | ν 6= 0∧ ν = BBegin(ν) + 8∧ BEnd(ν) = ν+! BBegin(ν)}

which soundly dereferences the final field size to express the invariant that the returned pointer

references an allocated block of memory that is as long as the region header plus the number

of bytes specified in the size field of the header. Our system is able to verify all the invariants

shown so far using the qualifier set Q2 defined as

Q2 = {ν 6= 0, ν > 0, ν ≥ 0,

BEnd(ν) = ν +p ?,

ν 6= 0⇒ ν ≥ BBegin(ν),

ν 6= 0⇒ ν = BBegin(ν) + 8,

ν 6= 0⇒ BEnd(ν) = ν + ! BBegin(ν)}.

3.3.2 Linked Structure Invariants

At least as important as the invariants that hold for each region and pool of the allocator

of Figure 3.15 are the invariants that hold between these objects. For example:

1. The list of pools must be sorted in ascending order by size to avoid allocating new regions

when a sufficiently large free region is already available.

2. The elements of the free list of a pool must have a size field that agrees with the size field

of the pool.

3. All regions within the free list of a pool must have the same value for size.

73

These invariants are challenging because they are not properties of single elements within the

pool and free list structures, but rather relationships between them. Nevertheless, we can take

advantage of the fact that certain fields are final to express, verify, and infer these invariants.

Sorted Free List We begin by showing how our system verifies that the list of pools is sorted in

increasing order of their size fields. This amounts to showing that the linked list insertion in

alloc maintains the order of the free list fl.

Block Invariants We first note that the heap has the following type at entry to alloc:
∼
`1 7→ 0 : final {ν : int | ν > 0},

4 : ref(
∼
`1, 0),

8+1 : char
∼
`2 7→ 0 : final int,

4 : ref(
∼
`1, 0),

8 : {ν : ref(
∼
`2, 0) | ν 6= 0⇒ @0 < !ν}

Here,
∼
`1 represents the collection of region structures, while

∼
`2 represents the collection of pool

structures. The qualifier “final” attached to a field’s type indicates that the field is final, i.e., it will

not be mutated after the current program point. The type {ν : ref(
∼
`2, 0) | ν 6= 0⇒ @0 < !ν}

indicates that the next field of each pool is either null or points to a pool structure with a strictly

greater size — in other words, that the list of pools is sorted by size.

We demonstrate how our system verifies that this type is maintained through execution

of the alloc function. If the test on line 13 passes, the function returns immediately without

touching the heap. Otherwise, the loop of lines 14–17 iterates over the free list fl until either

a pool of regions of sufficient size is found or we reach the last pool without finding any that

contains large enough regions. Line 18 checks whether the loop exited because a large enough

pool was found; if so, the function exits. Otherwise, a new pool is allocated and appended to the

free list in lines 19–23.

Verifying Insertion At line 18, p is unfolded to a concrete location `2
p:

`2
p 7→ 0 : {ν : final int | ν = x1},

4 : {ν : ref(
∼
`1, 0) | ν = x2},

8 : {ν : ref(
∼
`2, 0) | ν = x3}

The fresh variables x1, x2, x3 are created to represent the initial values of p’s fields and bound in

the environment; their types are not important, except to note that we know that x1 is positive.

74

At line 19, np is assigned the result of an sbrk call which allocates new memory; the

effect of this call is to create a concrete location pair, `2
np, on the heap and bind np to a pointer to

`2
np:

`2
np 7→ 0 : int,

4 : ref(
∼
`1, 0),

8 : ref(
∼
`2, 0)

The type of `3
np contains no refinements, reflecting the fact that nothing is known about the

uninitialized data at that location. Note that we have unfolded both p and np, which share the

same abstract location; this is sound, as the freshly-allocated pointer np cannot possibly alias

with any existing pointers.

At line 20, the assignment to np->size changes the type of np’s size field:

`2
np 7→ 0 : final {ν : int | ν = 2 ∗ x1},

4 : ref(
∼
`1, 0),

8 : ref(
∼
`2, 0)

Recall that x1 is the fresh variable corresponding to p->size. The size field is marked final to

indicate that it is no longer mutated after this assignment, and our system soundly adds the

guard

!np = 2 ∗ x1

to the environment.

Lines 21 and 22 alter the remaining fields:

`2
np 7→ 0 : final {ν : int | ν = 2 ∗ x1},

4 : {ν : ref(
∼
`1, 0) | ν = 0},

8 : {ν : ref(
∼
`2, 0) | ν = 0}

Finally, we update the type of p->next to reflect the assignment of np:

`2
p 7→ 0 : final {ν : int | ν = x1},

4 : {ν : ref(
∼
`1, 0) | ν = x2},

8 : {ν : ref(
∼
`2, 0) | ν = np}

75

By subtyping and the guard !np = 2 ∗ x1, we have

`2
p 7→ 0 : final {ν : int | ν = x1},

4 : {ν : ref(
∼
`1, 0) | ν = x2},

8 : {ν : ref(
∼
`2, 0) | x1 < !ν}

This type is subsumed by the type of
∼
`2, and so we have successfully verified that appending a

new pool to the end of the memory pool list preserved the sortedness of the list.

Our system is able to verify all the invariants shown so far using the qualifier set Q3,

defined as

Q3 = Q2 ∪ {ν 6= 0⇒ ? < !ν}.

Size Agreement The remaining invariants, that the elements of the free list for each pool have

size fields that match the size field of the pool itself and that each region in a free list has the

same value for its size fields, are proved similarly. Thus, using the qualifier set

Q4 = Q3 ∪ {ν 6= 0⇒ !ν = ?},

our system is able to prove all the invariants of this section by inferring that the heap has the

following type:

∼
`1 7→ 0 : final int,

4 : {ν : ref(
∼
`1, 0) | @0 = !ν},

8+1 : char
∼
`2 7→ 0 : final int,

4 : {ν : ref(
∼
`1, 0) | @0 = !ν},

8 : {ν : ref(
∼
`2, 0) | ν 6= 0⇒ @0 < !ν}

3.3.3 Formal Changes to the NANOC Type System

In this section, we describe the changes to the NANOC type system that are needed to

accommodate final fields.

Dereference Expressions in Refinement Predicates We augment our language of refinement

predicates with the expression form !v, which represents the value obtained by dereferencing the

pointer v. To ensure that our type system is sound, our well-formedness rules only allow such

dereferences to appear in refinement predicates when v is a pointer to a final field. Formally, this

76

u ::= Field Qualifiers

| ε mutable field (no qualifier)

| final final field

b ::= Blocks

| i : u τ block

Figure 3.16: Additions to NANOC types to support final fields

Refinement Dereference Well-Formedness Γ, h �! v

h = h0 ∗ ` 7→ . . . , i : final τ, . . . Γ ` v : ref(`, i)

Γ, h �! v
WF-DEREF

Predicate Well-Formedness Γ, h � φ

φ well-sorted in Γ, h !v ∈ φ⇒ Γ, h �! v

Γ, h � φ
WF-PRED

Figure 3.17: Determining well-formedness of refinement predicates

obligation is shown with the judgment Γ, h �! v of Figure 3.17, which states that it is acceptable to

dereference v under environment Γ and heap h exactly when Γ and h indicate that v is a pointer

to a final field within h.

Field Qualifiers A field qualifier u is used to indicate whether a field within a heap-allocated

structure may be modified. If a field has no qualifier, it may be modified; a field with the modifier

final cannot be modified.

Block Types We modify the form of blocks so that each field consists of a triple of its index,

which gives its location within the block, its field qualifier, which determines whether the field

may be mutated, and its type. The syntaxes of field qualifiers and block types augmented with

field qualifiers are shown in Figure 3.16.

Type Well-Formedness The updated type well-formedness rules of NANOC are given in Fig-

ure 3.18. The changes are largely straightforward: because the well-formedness of refinement

predicates now depends on the field qualifiers contained in the heap, it is necessary to thread

heaps through the well-formedness rules.

77

Type Well-Formedness Γ, h � τ

Γ, h � φ

Γ, h � {ν : t | φ}
WF-TYPE

Dependent Block Well-Formedness Γ, h �@ b

DisjointOffsets(n : τ, b)

x /∈ Γ, FV(τj) Γ, h � τ Γ, x : τ, h �@ ij : τj[@n 7→ x]

Γ, h �@ n : τ, ij : τj

WF-DBLOCK-SINGLE

Γ, h � i+j : τj

Γ, h �@ i+j : τj

WF-DBLOCK-SEQUENCE

Non-Dependent Block Well-Formedness Γ, h � b

DisjointOffsets(ij : τj) ∀j.Γ, h � τj

Γ, h � ij : τj

WF-NDBLOCK

Heap Type Well-Formedness Γ, h1 � h2

Γ, h � ∅
WF-HEMPTY

Γ, h � h0
∼
` /∈ dom(h0) Γ, h �@ b

Γ, h � h0 ∗
∼
` 7→ b

WF-HABSTRACT

Γ, h � h0 Γ, h � b
∼
`∈ dom(h0) `k /∈ dom(h0)

Γ, h � h0 ∗ `j 7→ b
WF-HCONCRETE

World Well-Formedness Γ � τ/h

Γ, h � τ Γ, h � h

Γ � τ/h
WF-WORLD

Function Schema Well-Formedness � σ

Γ = xi : τi Γ, h1 � τi Γ � h1 Γ � τ/h2 τi, h1, τ, h2 abstract

� (xi : τi)/h1 → τ/h2

WF-FUNSCHEME

Figure 3.18: Rules for well-formedness of NANOC types with final fields

Type Checking The changed and updated type checking rules for NANOC with final fields

are shown in Figure 3.19. The rules T-READ-MUTABLE and T-READ-FINAL are straightforward

78

Expression Typing Rules G, Γ, h ` e : τ/h2

Γ ` v : {ν : ref(`j, i) | Safe(ν, n)}
h = h1 ∗ `j 7→ . . . , i : τ, . . . SizeOf(τ) = n

G, Γ, h ` ∗nv : τ/h
T-READ-MUTABLE

Γ ` v : {ν : ref(`j, i) | Safe(ν, n)}
h = h1 ∗ `j 7→ . . . , i : final {ν : t | φ}, . . . SizeOf(τ) = n

G, Γ, h ` ∗nv : {ν : t | ν =!v ∧ φ}/h
T-READ-FINAL

G, Γ, h0 ∗ ` 7→ b1, i : final τi, b2 ` e : τe/he

he = h′ ∗ ` 7→ b′1, i : final τ′i , b′2 h2 = h′ ∗ ` 7→ b′1, i : u τ′i , b′2 Γ � τ̂/ĥ2

G, Γ, h0 ∗ ` 7→ b1, i : τi, b2 ` e : τ̂/ĥ2

T-FINALIZE

h = h0 ∗ `j 7→ . . . , i : {ν : t | φ}, . . .

n
∼
⊆ i Γ ` v : ref(`j, n) G, Γ; φ[ν 7→ !v], h ` e : τ/h′

G, Γ, h ` e : τ/h′
T-ASSUME-FINAL

`j fresh h = h0 ∗
∼
` 7→ b Γ � h ∗ `j 7→ b

Γ ` v : {ν : int(W, i) | ν ≥ 0} τ = {ν : ref(`j, 0) | Allocated(ν, v)}

G, Γ, h ` malloc(v) : τ/h ∗ `j 7→ b0
!

T-MALLOC

Figure 3.19: Rules for type checking NANOC expressions with final fields

extensions of the rule T-READ, applied to fields which are mutable or final, respectively. Rule

T-READ-MUTABLE is identical to T-READ. Rule T-READ-FINAL strengthens the refinement

predicate of the value read from the heap to indicate that it is identical to the value obtained by

dereferencing the pointer v.

Rule T-FINALIZE is used to add the field qualifier final to the field at offset i within

location ` when type checking expression e, rendering that field immutable within the expression

and allowing refinement predicates to soundly contain dereferences of pointers to that field. After

type checking the body expression e, the field may either be left final, or restored to mutability;

this choice is represented by the variable u attached to the field, which indicates that any field

qualifier may be used for the field at offset i within `. In the case where the field is made

mutable again after type checking the body, soundness requires that we ensure that there are

no refinement predicates in scope that may dereference pointers to the field. Since the field was

mutable before this expression, such dereferences cannot be contained in Γ or the input heap,

and so may only occur in τ or h2; thus, it suffices to check that the output type and heap are

well-formed when the field is made mutable again.

79

For simplicity of implementation, we generally use T-FINALIZE to finalize a field for the

remainder of a function; that is, we do not make a field mutable again after it has been finalized.

The sole exception is when a function whose heap indicates a field is mutable calls a function

which does not mutate that field, and so whose function type assigns the final qualifier to that

field. In this case, we wrap the call using T-FINALIZE to make the field immutable solely for the

duration of the call, restoring the field to mutability as soon as the callee returns.

Rule T-ASSUME-FINAL is used to introduce assertions about the values obtained by

dereferencing pointers into the environment when type checking an expression. Note that the

assertion added to the environment is over a value v which points to a concrete location in the

heap, guaranteeing that it refers to a single (non-null) run-time location.

Rule T-MALLOC changes in two significant ways. First, the block returned is b0
! , defined

as

(n : u {ν : int(w, i) | φ}, b)0
! = n : {ν : int(w, 0) | ν = 0|w|}, b0

!

(n : u {ν : ref(`, i) | φ}, b)0
! = n : {ν : ref(

∼
` , 0) | ν = 0}, b0

!

(i+ : u {ν : int(w, i) | φ}, b)0
! = i+ : {ν : int(w, i t 0) | φ ∨ ν = 0|w|}, b0

!

(i+ : u {ν : ref(`, i) | φ}, b)0
! = i+ : {ν : ref(

∼
` , i t 0) | φ ∨ ν = 0}, b0

!

The key difference from b0 is that all field qualifiers are removed from the fields, meaning

that every field in the newly-allocated location is mutable. This does not cause any problems

with soundness, as the location is newly-allocated; to be unsound, there would have to be an

existing pointer whose refinement type contains a dereference targeting one of the fields in the

newly-allocated region, which is impossible.

Second, we omit the well-formedness requirement, which allows us to have an existing

pointer and any number of freshly-allocated pointers all unfolded simultaneously. This is sound,

as it is impossible for a freshly-allocated pointer to alias with any existing pointer. (While this

change is independent of the changes related to final fields, we have deferred it to this point

because it complicates the theory and we do not prove it sound.)

Soundness While we believe the rules presented to be sound, we do not make any formal claims

of their soundness. In particular, the soundness proof of Appendix C does not consider the rules

presented in this section.

3.4 Type Inference

Next, we give a brief overview of type inference in NANOC. Type inference occurs in

three phases. The first infers physical types for each function in the program. The second inserts

location fold and unfold operations where necessary. The third and final step infers refinement

types using liquid type inference.

80

3.4.1 Physical Type Inference

In the previous chapter, we based our type inference technique on the rich type informa-

tion provided by ML’s type system. Because C programs are essentially untyped, we first use a

basic type inference pass to assign rich physical types to local variables and expressions and to

discover the types of the heap’s contents.

We first use the declared C types of all functions in the program to generate a correspond-

ing physical type schema for each function. This process is largely automatic and rarely requires

annotations to be added. The generated function schemas are then used to infer physical types

for local variables and the heap. This process occurs in two phases: First, our algorithm infers

physical types for local variables, assuming that the types of values stored in the heap conform

to the declared types of the pointers used to access the values. Physical type inference for local

variables works by first assigning each local variable a physical type with an index variable

representing its as-yet-unknown index. The algorithm then traverses the body of the function in

a syntax-directed manner and emits subtyping constraints capturing the flow of data within the

function. The algorithm then uses a fixpoint algorithm to solve the constraints over the index

domain to find an assignment of index variables to indices so that the function is typable given

the assumptions made about the heap.

After the types of local variables have been inferred, the function’s (abstract) heap type

is inferred by traversing the function and incrementally building the heap type as heap read and

write instructions are encountered. This phase also performs a field-sensitive may alias analysis

to determine which locations exist in the heap and to assign location names to values of reference

type.

The type assumptions made in the first phase are checked in an assume-guarantee

fashion by emitting appropriate deferred type checks that are enforced by the refinement type

system.

3.4.2 Fold and Unfold Inference

After physical type inference, our system automatically inserts location fold and unfold

expressions in order to ensure that every dereference is on a concrete pointer and that only

one concrete location is unfolded at a time, as required by our typing rules. The appropriate

spots to insert folds and unfolds are determined by a forward dataflow analysis that works as

follows: At the beginning of the function, all heap locations are in a folded state, i.e., there are no

concrete locations in the heap. The algorithm traverses each block in the control flow graph in

order, inserting an unfold before any access to a pointer which has not already been unfolded,

and inserting any necessary folds if another pointer which may alias the one being unfolded is

already unfolded. The analysis tracks which pointers are currently unfolded at the exit of each

block; if two different unfolded pointers to the same abstract location can reach the entry of a

81

block — for example, if two different pointers are unfolded along the then and else branches of

an if statement — the pointers are folded at the exits of their respective blocks. The algorithm

iterates until it reaches a fixed point.

3.4.3 Final Field Inference

Type inference with final fields has two components. First, we must determine which

fields within the heap are final at each program point. Second, we must determine where to use

the non-syntax-directed rules T-FINALIZE and T-ASSUME-FINAL.

Determining Final Fields Per Program Point We use an interprocedural dataflow analysis to

discover, at each program point, which fields in the heap are final, i.e., will not be mutated from

that program point on. The intraprocedural component is a straightforward backwards dataflow

analysis. The analysis begins with all fields final at the exits of the function, then traverses the

control flow graph backwards from the function exits. At each program statement, the analysis

computes the set of final fields at the start of the statement from the set of final fields at the exit of

the statement by removing any fields which were assigned in the current statement; which fields

are assigned within the statement is determined using the inferred physical type information. At

each control flow join point, the set of final fields at a control flow graph node is taken to be the

intersection of the final fields at the entry to each of its successors.

The interprocedural analysis simply computes per-function final fields information and

runs the intraprocedural analysis. The process is iterated to a fixed point.

Inferring uses of T-FINALIZE and T-ASSUME-FINAL Next, we use the inferred final fields

information to determine where the non-syntax directed rules T-FINALIZE and T-ASSUME-FINAL

may be used. Rule T-FINALIZE is invoked in two places. First, whenever a field is written and its

value remains final for the remainder of the function body, T-FINALIZE is used to mark that field

as final. Second, whenever a call is made from a function where a field is mutable to a function

whose input heap marks the field as final, T-FINALIZE is used to wrap the call, allowing the

function to be called in spite of the fact that the field is not final in the caller.

Uses of T-ASSUME-FINAL also appear in two places. First, whenever a field is written

and finalized with T-FINALIZE, T-ASSUME-FINAL is used to record the relationship between the

pointer that was written through and the value that was just written. Second, T-ASSUME-FINAL

is used after invocations of T-UNFOLD to assert the relationship between the unfolded pointer

and the values of those of its final fields which occur at singleton offsets.

3.4.4 Refinement Inference

Finally, we use liquid type inference, as described in the previous chapter, to infer

refinement types thus automatically discover data structure invariants. As before, we observe

82

that our type checking rules encode an algorithm for type inference and so we perform type

inference by attempting to produce a type derivation. At various points in the derivation, we

encounter types, heaps, and function schemas which cannot be synthesized directly from the

form of the expression and the current environment, but instead must be inferred. We insist

that such types, blocks, heaps, and schemas be liquid, denoted τ̂ (respectively, b̂, ĥ, σ̂), i.e.,

their refinements must be liquid refinements consisting of a conjunction of logical qualifiers, as

described in the previous chapter. Whenever we encounter a type which must be inferred, we

create a new template type, which is the physical type inferred earlier where a fresh variable is

used to represent the as-yet-unknown liquid refinement. As in the previous chapter, we generate

subtyping constraints over the template types using the subtyping premises in our type rules; the

subtyping rules are used to reduce these constraints to simple implication constraints between

refinement predicates and unknown refinement variables. These constraints are solved to yield a

liquid refinement for each refinement variable; replacing each variable with its solution yields a

refinement typing for the program.

3.5 Implementation and Evaluation

We implemented our type system in CSOLVE, a prototype static verifier for C programs.

In this section, we describe the architecture of CSOLVE and the results of applying CSOLVE to a

variety of challenging benchmarks.

3.5.1 CSOLVE: Liquid Types for C

Below, we briefly describe the architecture and usage of CSOLVE. CSOLVE takes as input

a C source file and a set of logical qualifiers, which CSOLVE uses to perform liquid type inference.

CSOLVE then outputs the inferred liquid types of functions, local variables, and heap locations

and reports any refinement type errors that occur.

Architecture Type inference in CSOLVE is split into four phases. In the first phase, the input

C program is read by CIL [68], which generates an AST. This AST is then simplified in various

ways, the most significant of which is that the code is transformed to SSA so that local variables

are never mutated. The second phase generates physical types for each declared function and

global variable and checks that the program code respects these types. The third phase walks

the CIL AST and assigns each expression and variable in the program a refinement type with a

distinct refinement predicate variable representing its as-yet-unknown refinement predicate, as

well as generating subtyping constraints over these refinement types such that solving for the

refinement variables within the constraints yields a valid typing for the program, in the same

style as the ConsGen function of section 2.3. The fourth phase attempts to solve the subtyping

83

constraints using a fixpoint procedure based on predicate abstraction, using the Z3 SMT solver

[28] to discharge the logical validity queries that arise in constraint solving.

Input CSOLVE takes as input a C source code file and a file specifying the set of logical qualifiers

to use in refinement inference. Qualifiers are also read from a standard library of qualifiers

that have proven to be useful on a large variety of programs, further easing the programmer’s

annotation burden.

Output If the program is type-safe, CSOLVE outputs “Safe”. Otherwise, the program may be

type-unsafe, according to either the physical type system or the refinement type system. In either

case, for each error, CSOLVE prints the name of the file and line number where the error occurs,

as well as a description of the error. In the case where the error is in refinement type inference,

CSOLVE prints the subtyping constraints which cannot be solved. Whether the program type

checks or not, CSOLVE produces a mapping of program identifiers to their inferred types, which

can be viewed using the tag browsing facilities provided by common editors, e.g., Vim and

Emacs.

Compatibility With C Infrastructure Thanks to the infrastructure provided by CIL, CSOLVE is

able to work as a drop-in replacement for GCC. Hence, to check a multi-file program one need

only construct or slightly modify a makefile which builds the program from source.

Modular Type Checking If the user specifies a type for a function with the extern keyword,

CSOLVE will use the provided type when checking the current source file, allowing the user to

omit the body of the external function. This allows for modular type checking and, by abstracting

away the details of other source files, it permits the user to work around cases where a function

may be too complex for CSOLVE to type check.

3.5.2 Memory Safety Benchmarks

We applied CSOLVE to several challenging benchmarks, drawn from [11], [60], [73], and

the example of section 3.1, which illustrate common low-level coding idioms. The results are

shown in Table 3.1. In each case, CSOLVE was able to precisely reason about complex invariants

of in-heap data structures and memory access patterns to statically verify memory safety by

proving the absence of null pointer dereferences and array bounds violations. (In the case of ft,

we show only array bounds safety; see chapter 4.) We explain several of the benchmarks below.

String Lists Using CSOLVE, we verified the safety of a program implementing a C idiom for

linked list manipulation which is particularly common in operating system code [18] and which

requires precise reasoning about pointer arithmetic. Recall the example of section 3.1, which

contained functions for creating and initializing strings and for creating lists of strings. We

84

add to that example the function succ, shown below, which takes a pointer to the str field of

a stringlist and returns the next string in the list. (Explicit null checks checks have been

omitted for brevity.) This function is used in init succ, which creates a list of several strings

and initializes the second one using init string. CSOLVE precisely tracks pointer arithmetic to

verify init succ, by proving that that the input to init string has the type from section 3.1.

slist *string_succ (string **s) {

1: slist *parent = (slist **) s - 1;

2: return parent ->next ->s;

}

void init_succ () {

slist *sl;

string *succ;

sl = new_strings (3);

succ = string_succ (&sl1 ->s);

init_string (succ , ’\0’);

}

The string succ function expects an argument s of type ref(
∼
`1, 4) in a heap of the form

∼
`1 7→ 0 : ref(

∼
`1, 0), 4 : ref(

∼
`2, 0)

∼
`2 7→ 0 : {ν : int | 0 ≤ ν}, 4 : {ν : ref(

∼
`3, 0) | BLen(ν, @0)}

∼
`3 7→ 0+1 : char.

From section 3.1, we know that the return type of new strings provides a pointer of this type,

assigned to sl, in the appropriate heap. Thus, we begin in succ with the assignment to parent

on line 1. Since s is cast to a stringlist∗, which is 4 bytes long, and decremented, the type

of the pointer assigned to parent is ref(
∼
`1, 0). Continuing on line 2, the type of parent->next

is the same, since the next pointer points to a structure of the same type. Finally, the type

of parent->next->s is given by the type at offset 4 of
∼
`1, since s is the second item in the

stringlist structure. Thus, string succ returns a pointer of type ref(
∼
`2, 0) — a pointer to a

string — in a heap of the form shown above. This pointer is passed to init string; as the

pointer and heap meet the required invariants, CSOLVE verifies safety. Thus, CSOLVE precisely

reasons about pointers and in-heap data structures and automatically verifies this example using

the qualifiers Q from section 3.1.

Audio Compression Using CSOLVE, we verified the memory safety of routines for ADPCM

audio encoding and decoding. The encoder, outlined below, takes as input an audio stream

consisting of an array of 16-bit samples and outputs a compressed stream using 4 bits to represent

each sample. The encoder relies on complex loop invariants to ensure memory safety.

85

Table 3.1: Results. Lines is the number of source lines without comments. Qualifiers is the
number of manually-provided logical qualifiers used. Assumes is the number of manual

assumptions inserted. Time (s) is the time in seconds CSOLVE requires to verify safety.

Program Lines Qualifiers Assumes Time (s)

stringlist 72 1 0 2
strcpy 77 3 0 4
adpcm 198 13 0 42
pmap 250 3 0 34
mst 309 1 0 16
power 620 7 2 111
ft 652 2 6 310
ks 742 9 7 721

Total 2,920 39 15 1,240

void encoder (int nsamp , short *inz , char *outz) {

short *in = inz;

char *out = outz;

int bufferempty = 1;

char buffer;

for (int len = nsamp; 0 < len; len --) {

// Read an input sample

... *in++ ...;

if (! bufferempty) {

// Write to buffer elided

*out++ = buffer;

} else {

// Write to buffer elided

}

bufferempty = !bufferempty;

}

if (! bufferempty) *out++ = buffer;

}

The encoder takes three parameters: nsamp, the total number of samples in the input;

inz, a pointer to the start of the input buffer, an array of 16-bit short values; and outz, a pointer

to the output buffer, an array of 8-bit char values. The number of elements in the input buffer is

twice the number of elements in the output buffer. The pointer in, initially set to inz, is used

to read data from the input buffer; the pointer out, initially set to outz, is used to write data

to the output buffer. The for loop iterates through each element of the input buffer. At each

iteration, the loop reads 16 bits (a single short value) from the input buffer and advances in.

Each iteration also computes a new 4-bit value for the output; however, since out is a char

pointer, the encoder must write 8 bits at a time. Thus, the encoder buffers output into a local

char value and only writes to out every other iteration. The flag bufferempty indicates whether

to write to and advance out. The final if writes to the output in case there is a value in the buffer

which has not been written, i.e., if there are an odd number of samples in the input.

86

CSOLVE verifies the safety of dereferences of in and out, by inferring that in and out

have the respective types

{ν = inz+ nsamp− len}

{2 ∗ (ν− outz) = nsamp− len− (1− bufferempty)}

which encode the crucial loop-invariants that relate the values of the respective pointers with the

number of iterations and the flag. By inferring similar invariants CSOLVE verifies the decoding

routine.

Virtual Memory Using CSOLVE, we verified the array safety of pmap, a 317-line program

implementing a virtual memory subsystem of the JOS OS kernel [11] that comprises functions

for allocating and freeing virtual address spaces, allocating and freeing a physical page backing a

virtual page, and mapping two virtual pages onto the same physical page.

To ensure the safety of array accesses in pmap we must precisely reason about the values

contained in the collection of environment structures that represents virtual address spaces. Each

environment includes a mapping from virtual pages to physical pages, envpgdir, represented as

an array of fixed length. Each index of envpgdir is mapped to either the physical page allocated

to the virtual page or -1 if no physical page has been allocated. Environments are joined together

in doubly-linked fashion to form a list of virtual address spaces.

The physical address space is described by the array pages, which contains N page

entries. Operations like allocating and freeing physical pages use entries from an envpgdir field

to index into pages. Thus, to prove array safety, we must verify that the items in every envpgdir

in every environment are valid indices into pages. Formally, we must verify that every pointer to

an environment points to a heap location
∼
` whose description is

∼
` 7→ 0 : ref(

∼
` , 0), 4 : ref(

∼
` , 0), 8+4 : {ν : int | ν < N}

where the pointers at offsets 0 and 4 are pointers to the next and previous environments, re-

spectively, and the integers at indices in 8+4 are the entries in envpgdir. Note that we cannot

prove that every entry in envpgdir is non-negative, as -1 is used to indicate an unused virtual

page. However, every item in envpgdir is verified to be non-negative before use as an index into

pages.

Using CSOLVE, we were able to verify that the above heap typing holds and thus

determine that every array access in pmap is within bounds. This is challenging because the

majority of array accesses are indirect, using an entry in an envpgdir field to index into an array

of physical page data. This requires precise reasoning about the values of all elements contained

in an in-heap data structure. Further, array offsets are frequently checked for validity in a

different function from the one in which they are used to access an array, requiring flow-sensitive

reasoning about values across function boundaries. Nevertheless, CSOLVE is able to verify the

safety of all array accesses in pmap.

87

3.5.3 Data Structure Benchmarks

Using CSOLVE, we verified several functions for manipulating sorted singly- and doubly-

linked lists in glib [78], a widely-used open source library. We specialize the list implementations,

which use void pointers to implement a sort of polymorphism, to instead operate only on integers;

we leave the issue of polymorphism to future work.

Singly-Linked Sorted Lists The glib library contains functions for manipulating sorted singly-

linked lists by inserting elements, removing an element identified either by a pointer to the

element or by its contents, and finding the n-th element of the list. We added a function

for checking the invariant that the list is sorted and a driver which exercises the library by

constructing and manipulating a sorted list using all of the above functions; together, the program

totals 182 physical (non-comment, non-blank) lines. CSOLVE is able to infer the sortedness

invariant and verify memory safety using 3 user-provided qualifiers in 6 seconds.

Doubly-Linked Sorted Lists The glib library also contains functions for manipulating sorted

doubly-linked lists; these include analogues of the mentioned functions for manipulating singly-

linked lists, as well as a function for retrieving the n-th previous element from a list element. As

before, we add a driver function which exercises the library; the total size of the program is 138

physical lines. Verifying the sorted insertion function required modifying two lines and inserting

a single trusted annotation. With this small modification, CSOLVE is able to infer sortedness

invariant and verify memory safety using 4 user-provided qualifiers in 9 seconds.

We briefly explain the nature of the annotation. The sorted list insertion function uses a

loop to iterate through the list in order using a pointer p until it reaches the node after which

the new element should be inserted. The loop has the invariant p->prev->data ≤ data, where

data is the new value to be inserted. As the prev field of p is modified by the function after the

loop, this loop invariant is not expressible as a refinement that explicitly dereferences p->prev.

Instead, we explicitly assume the loop invariant where it is used.

Memory Manager We applied CSOLVE to the memory manager example of Section 3.3.1, along

with a driver function which exercises the allocator and checks the invariants of the free list and

allocated regions, altogether 84 physical lines of code. CSOLVE verified the memory safety of

all field accesses (which are simply memory dereferences) within the program and statically

guarantees that all asserts used to check invariants will pass. We used the qualifiers Q4 of

Section 3.3.1, 4 of which are in CSOLVE’s standard library, along with one additional qualifier

required for proving memory safety. Thus, with 6 user-provided qualifiers, CSOLVE was able to

infer the invariants of the example and verify its safety in 9 seconds.

88

Acknowledgements

This chapter contains material adapted from the following publications:

Patrick Rondon, Ming Kawaguchi, Ranjit Jhala. “Low-Level Liquid Types”, Proceedings of

the 2010 ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),

pages 131–144, 2010.

Patrick Rondon, Alexander Bakst, Ming Kawaguchi, Ranjit Jhala. “CSolve: Verifying C

with Liquid Types”, Proceedings of Computer Aided Verification 2012 (CAV), pages 744–750,

2012.

Chapter 4

Conclusions and Future Work

In this dissertation, we have shown that the liquid types refinement type inference

technique allows for the highly-automated verification of safety properties in programs written in

both high-level, pure functional languages and low-level imperative languages. We implemented

the liquid types technique in two tools, DSOLVE and CSOLVE, which perform refinement type

inference for OCaml and C programs, respectively, and showed, through a number of benchmarks

taken both from the literature and from the wild, that liquid types enables the verification of

safety and correctness properties of real-world programs while imposing a very small annotation

burden. We see a number of directions for future work to both increase the expressiveness of our

type systems and bring liquid type inference into new domains.

4.1 Polymorphism

Presently, our low-level type system lacks several forms of polymorphism which would

be useful in verifying real-world programs.

Void Pointer Polymorphism Our current low-level type system has no support for any form of

type or heap polymorphism. Nonetheless, it is common for C programmers to write functions

which are polymorphic in their arguments or in the contents of their heaps; in particular, large

libraries like glib make use of polymorphism to implement generic data structures and algo-

rithms. Since the C type system does not include any form of polymorphism, polymorphism is

simulated by using pointers to the void type and inserting casts as appropriate. Scaling to large

C programs which take advantage of the generic data structures and algorithms will require

accommodating this style of polymorphism.

Structural Subtyping Some C programs take advantage of structural subtyping: a function

expects a pointer to a data structure and is called with pointers to “subtypes” of that structure

89

90

which may contain additional fields that are not accessed by the function. Because the callee may

modify some fields of the structure, it is not sound to keep the refinements on the untouched

fields as they were before the call, since they may depend on the modified fields. On the other

hand, eliminating these refinements could lead to unnecessary losses in precision when fields

are read but not written. Future versions of our low-level type system should accommodate the

combination of mutability, dependent refinements, and structural subtyping.

4.2 Flow-Sensitive Invariants

Our low-level type system allows flow-sensitive strong updates to the type of a single

member of an in-memory data structure. However, the type of the whole data structure is flow-

invariant: each individual element must reestablish the data structure’s type before the next

member of the structure is accessed.

For example, suppose that a list contains cells each of which has a data field with the

value 0, and suppose that an loop iterates over the list and sets each data field to 1. Our system

can only verify that at all points in time, each cell has the value 0 or 1. In particular, our system

cannot determine that before the loop, the data fields have the value 0, while after the loop the

data fields have the value 1. An important area of future work will be to capture and infer such

flow-sensitive invariants; more example target invariants follow.

Modeling Deallocation Currently, NANOC does not model deallocation: we assume that a

location, once allocated, is allocated for the duration of program execution. This assumption is

rarely justified in real-world low-level programs, which manually free memory when they are

no longer using it, so that our analysis does not guarantee the absence of use-after-free or double

free errors. Thus, a verifier which hopes to make strong guarantees about the absence of such

errors will need to track whether each region of memory is currently allocated.

Array Initialization Our low-level type system allows strong updates to the type of a single

elements within a data structure, but only allows weak updates to the type of all elements of the

data structure. In a similar vein, it only allows weak updates to the type of an array’s contents.

Suppose that we have an array of pointers which is allocated using malloc. Initially, all pointers

within the array are null. The array is then initialized so that all pointers are non-null. At present,

our type system can only determine that, after initialization, all pointers within the array may be

null — but it cannot verify that they must be non-null. Handling such array initializations will be

an important direction for future work.

91

4.3 Liquid Types for Dynamic Languages

The work of Chugh et al. [15] demonstrates how a refinement type system can be used to

verify the type safety of sophisticated higher-order dynamic language programs which operate

on dictionaries with dynamically-determined keys. While their work gives an algorithm for type

checking such programs, they do not give an inference algorithm. An exciting area of future

work would adapt the refinement type inference techniques shown here to the setting of dynamic

languages like Javascript and Python.

Bibliography

[1] Tilak Agerwala and Jayadev Misra. Assertion graphs for verifying and synthesizing pro-
grams. Technical Report 83, University of Texas, Austin, 1978.

[2] Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: A linear language with locations.
Fundam. Inf., 77(4):397–449, December 2007.

[3] Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi. Checking and inferring
local non-aliasing. In Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, PLDI ’03, pages 129–140, New York, NY, USA, 2003.
ACM.

[4] Lennart Augustsson. Cayenne — a language with dependent types. In Proceedings of the third
ACM SIGPLAN international conference on Functional programming, ICFP ’98, pages 239–250,
New York, NY, USA, 1998. ACM.

[5] Thomas Ball and Sriram K. Rajamani. The slam project: debugging system software via
static analysis. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’02, pages 1–3, New York, NY, USA, 2002. ACM.

[6] João Filipe Belo, Michael Greenberg, Atsushi Igarashi, and Benjamin C. Pierce. Polymorphic
contracts. In Proceedings of the 20th European conference on Programming languages and systems:
part of the joint European conferences on theory and practice of software, ESOP’11/ETAPS’11,
pages 18–37, Berlin, Heidelberg, 2011. Springer-Verlag.

[7] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio
Maffeis. Refinement types for secure implementations. In Proceedings of the 2008 21st IEEE
Computer Security Foundations Symposium, CSF ’08, pages 17–32, Washington, DC, USA, 2008.
IEEE Computer Society.

[8] Yves Bertot and Pierre Castéran. Interactive theorem proving and program development.
coq’art: The calculus of inductive constructions, 2004.

[9] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. A static analyzer for large safety-critical software.
In Proceedings of the ACM SIGPLAN 2003 conference on Programming language design and
implementation, PLDI ’03, pages 196–207, New York, NY, USA, 2003. ACM.

[10] Ahmed Bouajjani, Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu. Abstract
domains for automated reasoning about list-manipulating programs with infinite data. In
Proceedings of the 13th international conference on Verification, Model Checking, and Abstract
Interpretation, VMCAI’12, pages 1–22, Berlin, Heidelberg, 2012. Springer-Verlag.

92

93

[11] Josh Cates, Frans Kaashoek, and Emil Sit. The JOS operating system. http://pdos.csail.mit.
edu/.

[12] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular
verification of software components in c. IEEE Trans. Software Eng., 30(6):388–402, 2004.

[13] Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. A reach-
ability predicate for analyzing low-level software. In Proceedings of the 13th international
conference on Tools and algorithms for the construction and analysis of systems, TACAS’07, pages
19–33, Berlin, Heidelberg, 2007. Springer-Verlag.

[14] Adam Chlipala. Mostly-automated verification of low-level programs in computational
separation logic. In Proceedings of the 32nd ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’11, pages 234–245, New York, NY, USA, 2011. ACM.

[15] Ravi Chugh, Patrick M. Rondon, and Ranjit Jhala. Nested refinements: a logic for duck
typing. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’12, pages 231–244, New York, NY, USA, 2012. ACM.

[16] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71, London,
UK, UK, 1982. Springer-Verlag.

[17] Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, and Shaz Qadeer. Unifying type checking
and property checking for low-level code. In Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’09, pages 302–314, New
York, NY, USA, 2009. ACM.

[18] Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, and Shaz Qadeer. Unifying type checking
and property checking for low-level code. In Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’09, pages 302–314, New
York, NY, USA, 2009. ACM.

[19] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C. Necula.
Dependent types for low-level programming. In Proceedings of the 16th European conference
on Programming, ESOP’07, pages 520–535, Berlin, Heidelberg, 2007. Springer-Verlag.

[20] Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and Westley Weimer.
CCured in the real world. In Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, PLDI ’03, pages 232–244, New York, NY, USA, 2003. ACM.

[21] R.L. Constable. Implementing Mathematics with the Nuprl Proof Development System. Prentice-
Hall, 1986.

[22] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In
Proceedings of the Second International Symposium on Programming, pages 106–130. Dunod,
Paris, France, 1976.

[23] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully automatic
and scalable array content analysis. In Conference Record of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 105–118, Austin, Texas,
January 26-28 2011. ACM Press, New York.

[24] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, POPL ’77, pages
238–252, New York, NY, USA, 1977. ACM.

http://pdos.csail.mit.edu/
http://pdos.csail.mit.edu/

94

[25] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, POPL ’78, pages 84–96, New York, NY, USA, 1978. ACM.

[26] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’82, pages 207–212, New York, NY, USA, 1982. ACM.

[27] Rowan Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 2005.

[28] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In Proceedings of
the Theory and practice of software, 14th international conference on Tools and algorithms for the
construction and analysis of systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[29] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM, 18(8):453–457, August 1975.

[30] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis based on
separation logic. In Proceedings of the 12th international conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’06, pages 287–302, Berlin, Heidelberg, 2006.
Springer-Verlag.

[31] J. Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 2007.

[32] Joshua Dunfield. Refined typechecking with stardust. In Proceedings of the 2007 workshop
on Programming languages meets program verification, PLPV ’07, pages 21–32, New York, NY,
USA, 2007. ACM.

[33] B. Dutertre and L. De Moura. Yices SMT solver. http://yices.csl.sri.com/.

[34] Manuel Fahndrich and Robert DeLine. Adoption and focus: practical linear types for imper-
ative programming. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, PLDI ’02, pages 13–24, New York, NY, USA, 2002. ACM.

[35] Cormac Flanagan. Hybrid type checking. In Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’06, pages 245–256, New
York, NY, USA, 2006. ACM.

[36] Cormac Flanagan, Rajeev Joshi, and K. Rustan M. Leino. Annotation inference for modular
checkers. Inf. Process. Lett., 77(2-4):97–108, February 2001.

[37] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification. In
Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’02, pages 191–202, New York, NY, USA, 2002. ACM.

[38] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN 1993 conference on
Programming language design and implementation, PLDI ’93, pages 237–247, New York, NY,
USA, 1993. ACM.

[39] R.W. Floyd. Assigning meanings to programs. In Mathematical Aspects of Computer Science,
pages 19–32. American Mathematical Society, 1967.

http://yices.csl.sri.com/

95

[40] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In Proceed-
ings of the ACM SIGPLAN 2002 Conference on Programming language design and implementation,
PLDI ’02, pages 1–12, New York, NY, USA, 2002. ACM.

[41] Tim Freeman and Frank Pfenning. Refinement types for ml. In Proceedings of the ACM
SIGPLAN 1991 conference on Programming language design and implementation, PLDI ’91, pages
268–277, New York, NY, USA, 1991. ACM.

[42] Denis Gopan, Thomas Reps, and Mooly Sagiv. A framework for numeric analysis of array
operations. In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’05, pages 338–350, New York, NY, USA, 2005. ACM.

[43] Susanne Graf and Hassen Saı̈di. Construction of abstract state graphs with pvs. In Proceedings
of the 9th International Conference on Computer Aided Verification, CAV ’97, pages 72–83.
Springer-Verlag, London, UK, UK, 1997.

[44] Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund, and Cormac Flanagan.
Sage: Hybrid checking for flexible specifications. In Scheme and Functional Programming
Workshop, pages 93–104, 2006.

[45] Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting abstract interpreters to quantified
logical domains. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’08, pages 235–246, New York, NY, USA, 2008.
ACM.

[46] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Abstrac-
tions from proofs. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’04, pages 232–244, New York, NY, USA, 2004. ACM.

[47] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Software verifica-
tion with BLAST. In Proceedings of the 10th international conference on Model checking software,
SPIN’03, pages 235–239, Berlin, Heidelberg, 2003. Springer-Verlag.

[48] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, October 1969.

[49] Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language for mutable data
structures. In POPL, pages 14–26, 2001.

[50] Himanshu Jain, Franjo Ivančić, Aarti Gupta, Ilya Shlyakhter, and Chao Wang. Using
statically computed invariants inside the predicate abstraction and refinement loop. In
Proceedings of the 18th international conference on Computer Aided Verification, CAV’06, pages
137–151, Berlin, Heidelberg, 2006. Springer-Verlag.

[51] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yanling
Wang. Cyclone: A safe dialect of c. In Proceedings of the General Track of the annual conference
on USENIX Annual Technical Conference, ATEC ’02, pages 275–288, Berkeley, CA, USA, 2002.
USENIX Association.

[52] Ming Kawaguchi, Patrick Rondon, and Ranjit Jhala. Type-based data structure verification.
In Proceedings of the 2009 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’09, pages 304–315, New York, NY, USA, 2009. ACM.

[53] Kenneth Knowles and Cormac Flanagan. Type reconstruction for general refinement types.
In Proceedings of the 16th European conference on Programming, ESOP’07, pages 505–519, Berlin,
Heidelberg, 2007. Springer-Verlag.

96

[54] Kenneth Knowles and Cormac Flanagan. Compositional reasoning and decidable checking
for dependent contract types. In Proceedings of the 3rd workshop on Programming languages
meets program verification, PLPV ’09, pages 27–38, New York, NY, USA, 2008. ACM.

[55] Kenneth Knowles and Cormac Flanagan. Hybrid type checking. ACM Trans. Program. Lang.
Syst., 32(2):6:1–6:34, February 2010.

[56] Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order
programs. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’09, pages 416–428, New York, NY, USA, 2009. ACM.

[57] Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. Predicate abstraction and CEGAR
for higher-order model checking. In Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’11, pages 222–233, New York, NY,
USA, 2011. ACM.

[58] Shuvendu K. Lahiri and Randal E. Bryant. Predicate abstraction with indexed predicates.
volume 9, New York, NY, USA, December 2007. ACM.

[59] Shuvendu K. Lahiri and Shaz Qadeer. Verifying properties of well-founded linked lists. In
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’06, pages 115–126, New York, NY, USA, 2006. ACM.

[60] Chunho Lee, M. Potkonjak, and W.H. Mangione-Smith. Mediabench: a tool for evaluating
and synthesizing multimedia and communications systems. Microarchitecture, IEEE/ACM
International Symposium on, 0:330, 1997.

[61] K. Rustan Leino, Peter Müller, and Angela Wallenburg. Flexible immutability with frozen
objects. In Proceedings of the 2nd international conference on Verified Software: Theories, Tools,
Experiments, VSTTE ’08, pages 192–208, Berlin, Heidelberg, 2008. Springer-Verlag.

[62] Tal Lev-Ami and Shmuel Sagiv. TVLA: A system for implementing static analyses. In
Proceedings of the 7th International Symposium on Static Analysis, SAS ’00, pages 280–301.
Springer-Verlag, London, UK, UK, 2000.

[63] Scott McPeak and George C. Necula. Data structure specifications via local equality axioms.
In Proceedings of the 17th international conference on Computer Aided Verification, CAV’05, pages
476–490, Berlin, Heidelberg, 2005. Springer-Verlag.

[64] Antoine Miné. Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In Proceedings of the 2006 ACM SIGPLAN/SIGBED conference on
Language, compilers, and tool support for embedded systems, LCTES ’06, pages 54–63, New York,
NY, USA, 2006. ACM.

[65] Antoine Miné. The octagon abstract domain. Higher Order Symbol. Comput., 19(1):31–100,
March 2006.

[66] Anders Møller and Michael I. Schwartzbach. The pointer assertion logic engine. In Proceed-
ings of the ACM SIGPLAN 2001 conference on Programming language design and implementation,
PLDI ’01, pages 221–231, New York, NY, USA, 2001. ACM.

[67] Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars Birkedal.
Ynot: dependent types for imperative programs. In Proceedings of the 13th ACM SIGPLAN
international conference on Functional programming, ICFP ’08, pages 229–240, New York, NY,
USA, 2008. ACM.

97

[68] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools
for analysis and transformation of C programs. In CC 02: Compiler Construction, Lecture
Notes in Computer Science 2304, pages 213–228. Springer, 2002.

[69] G. Nelson. Techniques for program verification. Technical Report CSL81-10, Xerox Palo
Alto Research Center, 1981.

[70] Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Christian Grothoff. Constrained
types for object-oriented languages. In Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications, OOPSLA ’08, pages 457–474,
New York, NY, USA, 2008. ACM.

[71] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typing with
dependent types. In IFIP TCS, pages 437–450, 2004.

[72] Andreas Podelski and Thomas Wies. Boolean heaps. In Proceedings of the 12th international
conference on Static Analysis, SAS’05, pages 268–283, Berlin, Heidelberg, 2005. Springer-
Verlag.

[73] The GNU Project. GNU Coreutils. http://www.gnu.org/software/coreutils/.

[74] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS ’02, pages 55–74,
Washington, DC, USA, 2002. IEEE Computer Society.

[75] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceedings of the
2008 ACM SIGPLAN conference on Programming language design and implementation, PLDI ’08,
pages 159–169, New York, NY, USA, 2008. ACM.

[76] Swaroop Sridhar, Jonathan S. Shapiro, and Scott F. Smith. Sound and complete type
inference for a systems programming language. In Proceedings of the 6th Asian Symposium on
Programming Languages and Systems, APLAS ’08, pages 290–306, Berlin, Heidelberg, 2008.
Springer-Verlag.

[77] Saurabh Srivastava and Sumit Gulwani. Program verification using templates over predicate
abstraction. In Proceedings of the 2009 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’09, pages 223–234, New York, NY, USA, 2009. ACM.

[78] The GTK+ Team. glib. http://www.gtk.org/.

[79] Tachio Terauchi. Dependent types from counterexamples. In Proceedings of the 37th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’10, pages
119–130, New York, NY, USA, 2010. ACM.

[80] David Walker and J. Gregory Morrisett. Alias types for recursive data structures. In Selected
papers from the Third International Workshop on Types in Compilation, TIC ’00, pages 177–206,
London, UK, UK, 2001. Springer-Verlag.

[81] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer analysis for c
programs. In Proceedings of the ACM SIGPLAN 1995 conference on Programming language
design and implementation, PLDI ’95, pages 1–12, New York, NY, USA, 1995. ACM.

[82] H. Xi. DML code examples. http://www.cs.bu.edu/fac/hwxi/DML/.

[83] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent
types. In Proceedings of the ACM SIGPLAN 1998 conference on Programming language design
and implementation, PLDI ’98, pages 249–257, New York, NY, USA, 1998. ACM.

http://www.gnu.org/software/coreutils/
http://www.gtk.org/
http://www.cs.bu.edu/fac/hwxi/DML/

98

[84] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’99, pages 214–227, New York, NY, USA, 1999. ACM.

[85] Yichen Xie and Alex Aiken. Scalable error detection using boolean satisfiability. In Proceed-
ings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’05, pages 351–363, New York, NY, USA, 2005. ACM.

[86] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Diste-
fano, and Peter O’Hearn. Scalable shape analysis for systems code. In Proceedings of the
20th international conference on Computer Aided Verification, CAV ’08, pages 385–398, Berlin,
Heidelberg, 2008. Springer-Verlag.

[87] Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verification of linked data
structures. In Proceedings of the 2008 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’08, pages 349–361, New York, NY, USA, 2008. ACM.

[88] Dengping Zhu and Hongwei Xi. Safe programming with pointers through stateful views.
In Proceedings of the 7th international conference on Practical Aspects of Declarative Languages,
PADL’05, pages 83–97, Berlin, Heidelberg, 2005. Springer-Verlag.

Appendix A

Correctness of

Liquid Type Inference

In this chapter, we prove that the liquid type inference algorithm for λL given in sec-

tion 2.3 is sound and complete. That is, we prove the following: if our algorithm infers a type

for a program, then the program does truly satisfy that type according to the declarative typing

rules (soundness), and if our algorithm fails to infer a type for a program with a given set of

qualifiers, then there is no liquid type over that set of qualifiers that can be ascribed to the

program (completeness).

As our refinement-typed λ calculus, λL, is relatively standard, we refer readers interested

in a proof of soundness for the refinement type system to other work — for example, by Gordon

et al.

We begin with some standard assumptions about the declarative refinement type system

and underlying refinement logic:

Assumption 3. (Well-Formedness) If Γ ` e : σ̂ then Γ � σ̂.

Assumption 4. (Weakening) If

Γ = Γ1; Γ2

Γ′ = Γ1; x : σ̂x; Γ2

x /∈ FV(Γ2)

then:

1. if Γ � e1 ⇒ e2 then Γ′ � e1 ⇒ e2,

2. if Γ ` σ̂1 <: σ̂2 then Γ′ ` σ̂1 <: σ̂2,

99

100

3. if Γ � σ̂ then Γ′ � σ̂,

4. if Γ `Q e : σ̂ then Γ′ `Q e : σ̂.

Assumption 5. (Guard Weakening) If

Γ = Γ1; Γ2

Γ′ = Γ1; φ; Γ2

then,

1. if Γ � e1 ⇒ e2 then Γ′ � e1 ⇒ e2,

2. if Γ ` σ̂1 <: σ̂2 then Γ′ ` σ̂1 <: σ̂2,

3. if Γ � σ̂ then Γ′ � σ̂,

4. if Γ `Q e : σ̂ then Γ′ `Q e : σ̂.

Assumption 6. (Subtyping Reflexive Transitive)

1. if Γ � σ̂ then Γ ` σ̂ <: σ̂,

2. if Γ � e1 ⇒ e2 and Γ � e2 ⇒ e3 then Γ � e1 ⇒ e3,

3. if Γ ` σ̂1 <: σ̂2 and Γ ` σ̂2 <: σ̂3 then Γ ` σ̂1 <: σ̂3.

Theorem 3. (Soundness of Decidable Checking) If Γ `Q e : σ̂ then Γ ` e : σ̂.

Proof. By induction on the structure of the derivation of Γ `Q e : σ̂. The key observations are that

each liquid type (schema) is also a dependent type schema and that each liquid type deriviation

rule [LT-*] has a matching refinement type derivation rule.

Lemma 1. (Fresh) For each type schema σ̇ and assignment A over Q, A(Fresh(σ̇)) is a liquid type over

Q.

Proof. By induction on the structure of σ̇

Lemma 2. (Shape) For every liquid type assignment A:

1. Shape(T) = Shape(AT),

2. Shape(Γ) = Shape(AΓ).

Proof. (1) follows by induction on the structure of T. (2) follows from (1).

Lemma 3. (Derivation Projection) If Γ `Q e : σ̂ then Shape(Γ) ` e : Shape(σ̂).

Proof. Induction on the derivation of Γ `Q e : σ̂, and observing that each derivation rule for `Q

is a refinement of a matching rule for `.

101

Lemma 4. (Constraint Substitution) For every template environment Γ, expression e, and liquid type

assignment A, if ConsGen(Γ, e) = (T, C) then ConsGen(AΓ, e) = (AT, AC).

Proof. By induction on the structure of e.

Lemma 5. (Update) For any assignment A, template T fresh with respect to A (if a liquid type variable κ

appears in T then it appears only once and it is not in dom(A)) and liquid type τ̂ such that Shape(τ̂) =

Shape(T):

1. SolUpd(A, T, τ̂)(T) = τ̂

2. if PredVars(T′) ⊆ dom(A) then SolUpd(A, T, τ̂)(T′) = AT′.

Proof. By induction on the structure of T and τ̂.

Theorem 4. (Constraint Generation) For every type environment Γ and expression e such that

ConsGen(Γ, e) = (T, C),

Γ `Q e : σ̂ iff there exists an assignment A over Q such that AT = σ̂ and AC is valid.

Proof. Only if (⇒): By induction on the derivation Γ `Q e : σ̂.

• case e ≡ c or e ≡ x: Here PredVars(T) = ∅, i.e., T has no liquid type variables,

and C = ∅ so any solution A suffices.

• case e ≡ λx.e1: Here,

T = x : Tx → T1

C = C1 ∪ {Γ � T} ∪ {Γ; x : Tx ` T′1 <: T1}

σ̂ = x : τ̂x → τ̂1

x : Tx → T1 = Fresh(Shape(x : τ̂x → τ̂1))

(T′1, C1) = ConsGen(Γ; x : Tx, e1)

Let A0 = SolUpd(∅, T, σ̂). By Lemma 4,

(A0C1, A0T′1) = ConsGen(Γ; x : A0Tx, e1)

= ConsGen(Γ; x : τ̂x, e1)

By inversion, Γ � τ̂x and Γ; x : τ̂x `Q e1 : τ̂1. Thus, by IH, there exists A1 such that:

A1(A0C1), is valid (a)

A1(A0T′1) = τ̂1 (b)

102

Thus, A = A1; A0 is such that:

AT = A1(A0T)

= A1(σ̂)

= σ̂ as PredVars(σ̂) = ∅

Moreover,

A; A1C = A1; A0C1 ∪ {Γ � A1; A0T} ∪ {Γ; x : A1; A0Tx ` A1; A0T′1 <: T1}

as dom(A0) and dom(A1) are disjoint, and (b)

= A1; A0C1 ∪ {Γ � τ̂} ∪ {Γ; x : τ̂x ` τ̂1 <: τ̂1}

which, by (a), Lemma 3 and Lemma 6 respectively, is valid.

• case e ≡ v1 v2: Here,

T = T′[x 7→ v2]

C = C1 ∪C2 ∪ {Γ ` T′2 <: T′′2 }

(c : T′′2 → T′, C1) = ConsGen(Γ, e1)

(T′2, C2) = ConsGen(Γ, e2)

By inversion there exist τ̂2 and τ̂ such that:

Γ `Q v1 : x : τ̂2 → τ̂ (a)

Γ `Q v2 : τ̂2 (b)

σ̂ = τ̂[x 7→ v2] (c)

By IH and (a), there exist A1 such that:

A1T′′2 = τ̂2 and A1T′ = τ̂ (d)

A1C1 is valid (e)

By IH and (b), there exist A2 such that:

A2T′2 = τ̂2 (f)

A2C2 is valid (g)

103

Moreover,

dom(A1) = PredVars(x : T′′2 → T′) ∪ PredVars(C1)

dom(A2) = PredVars(T′2) ∪ PredVars(C2)

are disjoint (h)

as they result from generating constraints on different subexpressions and PredVars(Γ) = ∅.

Consider A = A1; A2.

AT = A1; A2T′[x 7→ v2]

which, due to delayed substitutions

= A1; A2T′[x 7→ v2]

which, because of disjoint domains (g)

= A1T′[x 7→ v2]

which, due to (d)

= τ̂[x 7→ v2]

= σ̂

Moreover,

AC =A1; A2C1 ∪ A1; A2C2 ∪ {Γ ` A1; A2T′2 <: A1; A2T′′2 }

which, due to disjoint domains (g)

=A1C1 ∪ A2C2 ∪ {Γ ` A2T′2 <: A1T′′2 }

which, due to (f) and (d)

=A1C1 ∪ A2C2 ∪ {Γ ` τ̂2 <: τ̂2}

which, by (e),(g) and Lemma 6 is valid.

104

• case e ≡ if v then e2 else e3: Here,

T = Fresh(Shape(σ̂)) (by Lemma 3)

C = C1 ∪C2 ∪C3 ∪ {Γ � T}

∪ {Γ; v ` T′2 <: T}

∪ {Γ;¬e1 ` T′3 <: T}

(·, C1) = ConsGen(Γ, v)

(T′2, C2) = ConsGen(Γ; v, e2)

(T′3, C3) = ConsGen(Γ;¬v, e3)

where PredVars(C1),PredVars(C2),PredVars(C3) are disjoint. By inversion, and applying

the IH, there exist solutions A1, A2, A3 such that:

A1C1, A2C2, A3C3 are valid (a)

A2T′2 = A3T′3 = σ̂ (b)

Γ � σ̂ (c)

Consider A = SolUpd(A1; A2; A3, T, σ̂), By Lemma 5,

AT = σ̂

AC = A1C1 ∪ A2C2 ∪ A3C3 ∪ {Γ � σ̂}

∪ {Γ; v ` A2T′2 <: σ̂}

∪ {Γ;¬v ` A3T′3 <: σ̂}

by (b) and (c)

= A1C1 ∪ A2C2 ∪ A3C3 ∪ {Γ � σ̂}

∪ {Γ; v ` σ̂ <: σ̂}

∪ {Γ;¬v ` σ̂ <: σ̂}

which, by (a), inversion and Lemma 6 is valid.

• case e ≡ let x = e1 in e2: Here,

T = Fresh(Shape(σ̂)) (by Lemma 3)

C = C1 ∪C2 ∪ {Γ � T} ∪ {Γ; x : T′1 ` T′2 <: T} (a0)

(T′1, C1) = ConsGen(Γ, e1)

(T′2, C2) = ConsGen(Γ; x : T′1, e2) (a1)

105

By inversion there exists σ̂1 such that:

Γ `Q e1 : σ̂1 (a)

Γ; x : σ̂1 `Q e2 : σ̂ (b)

Γ � σ̂ (c)

By (a) and IH there exists A1 such that:

A1C1 is valid (d)

A1T′1 = σ̂1 (e)

By Lemma 4 and (a1),

(A1T′2, A1C2) = ConsGen(Γ; x : A1T′1, expr2)

= ConsGen(Γ; x : σ̂′1, e2) by (e)

By (b) and IH, there exists A2 such that:

dom(A2) = PredVars(C2) which is disjoint from dom(A1) (f)

A2(A1C2) is valid (g)

A2(A1T′2) = σ̂ (h)

Consider A = SolUpd(A2; A1, T, σ̂). By Lemma 5,

AT = σ̂

By (a0), (f), and (i):

AC = A1C1 ∪ A2(A1C2) ∪ {Γ � AT} ∪ {Γ; x : A1T′1 ` A2(A1T′2) <: AT}

by (i), (e), (h)

= A1C1 ∪ A2(A1C2) ∪ {Γ � σ̂} ∪ {Γ; x : σ̂1 ` σ̂ <: σ̂}

which, by (d), (g), (c), and Lemma 6 is valid.

• case e ≡ Λα.e1: Here,

(T, C) = (Λα.T′1, C1)

(T′1, C1) = ConsGen(Γ, e1)

106

By inversion, exists σ̂1 such that Γ `Q e1 : σ̂1. Thus, by IH, exists a A1 such that:

A1C1 is valid (a)

A1T′1 = σ̂1 (b)

Consider A = A1.

AT = A1T

= A1(Λα.T′1)

= Λα.A1T′1

which, by (b),

= Λα.σ̂1

= σ̂

Finally,

AC =A1C1 which, by (a), is valid.

• case e ≡ e1[τ̇]: Here,

T = T′1[α 7→ Tα]

C = C1 ∪ {Γ � Tα})

(T′1, C1) = ConsGen(Γ, e1)

Tα = Fresh(τ̇)

By inversion, there exists τ̂, σ̂1 such that:

Γ �τ̂ (a)

Shape(τ̂) =τ̇ (b)

Γ `Q e1 : Λα.σ̂1 (c)

By IH, there exists A1 such that:

A1C1 is valid (d)

A1T′1 = Λα.σ̂1 (e)

Consider A = SolUpd(A1, Tα, τ̂):

AT = A(T′1[α 7→ Tα])

= AT′1[α 7→ ATα]

107

by Lemma 5

= A1T′1[α 7→ τ̂]

= Λα.σ̂1[α 7→ τ̂]

= σ̂

If (⇐): By induction on the structure of e.

• case e ≡ c or e ≡ x Trivial as C = ∅ and T such that PredVars(T) = ∅ and Γ `Q e : T.

• case e ≡ λx.e1: Here

T = x : Tx → T1

C = C1 ∪ {Γ � T} ∪ {Γ; x : Tx ` T′1 <: T1}

σ̂ = x : τ̂x → τ̂1

x : Tx → T1 = Fresh(Shape(x : τ̂x → τ̂1))

(T′1, C1) = ConsGen(Γ; x : Tx, e1)

As AC is valid,

AC1 is valid (a)

Γ � x : ATx → AT1 (b)

Γ; x : ATx ` AT′1 <: AT1 (c)

By Lemma 4,

(AT′1, AC1) = ConsGen(Γ; x : ATx, e1)

By (a) and the IH,

Γ; x : ATx `Q e1 : AT′1 (d)

By (d),(b),(c) and rule LT-SUB,

Γ; x : ATx `Q e1 : AT1 (e)

By Lemma 1, and rule LT-FUN,

Γ `Q λx.e1 : x : ATx → AT1

implies Γ `Q λx.e1 : A(x : Tx → T1)

implies Γ `Q λx.e1 : AT

108

• case e ≡ v1 v2: Here,

T = T′[x 7→ v2]

C = C1 ∪C2 ∪ {Γ ` T′2 <: T′′2 }

(c : T′′2 → T′, C1) =ConsGen(Γ, v1)

(T′2, C2) =ConsGen(Γ, v2)

AC is valid

AC1 ∪ AC2 is valid

Γ ` AT′2 <: AT′′2 (a)

Hence, by the IH,

Γ `Q v1 : x : AT′′2 → AT′ (b)

Γ `Q v2 : AT′2 (c)

From (b), and Assumption 3,

Γ � AT′′2 (d)

Thus, from (a),(c), (d) and rule LT-SUB,

Γ `Q v2 : AT′′2

From (b) and rule LT-APP,

Γ `Q v1 v2 : AT′[x 7→ v2] (e)

As substitutions are delayed,

AT′[x 7→ v2] =AT′[x 7→ v2] = AT

and so, from (e),

Γ `Q v1 v2 : AT

• case e ≡ if v1 then e2 else e3: Here,

T = Fresh(Shape(σ̂)) (by Lemma 3)

C = C1 ∪C2 ∪C3 ∪ {Γ � T} ∪ {Γ; v1 ` T′2 <: T}{Γ;¬v1 ` T′3 <: T}

(·, C1) = ConsGen(Γ, v1)

(T′2, C2) = ConsGen(Γ; v1, e2)

(T′3, C3) = ConsGen(Γ;¬v1, e3)

109

As AC is valid,

AC1, AC2, AC3 are valid (a)

Γ � AT (b)

Γ; v1 ` AT′2 <: AT (ct)

Γ;¬v1 ` AT′3 <: AT (cf)

By (a) and IH,

Γ; v1 `Q e2 : AT′2

Γ;¬v1 `Q e3 : AT′3

By (b), (ct), (cf), Lemma 5,

Γ; v1 `Q e2 : AT

Γ;¬v1 `Q e3 : AT

By (a), Lemma 1 and rule LT-IF,

Γ `Q if v1 then e2 else e3 : AT

• case e ≡ let x = e1 in e2: Here,

T = Fresh(Shape(σ̂)) (by Lemma 3)

C = C1 ∪C2 ∪ {Γ � T} ∪ {Γ; x : T′1 ` T′2 <: T}

(T′1, C1) = ConsGen(Γ, e1)

(T′2, C2) = ConsGen(Γ; x : T′1, e2)

As AC is valid

AC1, AC2 are valid (a)

Γ � AT (b)

Γ; x : AT′1 ` AT′2 <: T (c)

By (a) and IH,

Γ `Q e1 : AT′1 (d1)

Γ; x : AT′1 `Q e2 : AT′2 (d2)

110

By (b), (c), (d1), Assumption 4, and rule LT-SUB,

Γ; x : AT′1 `Q e2 : AT (e)

Thus, by (b), (c), (d1), (e) and rule LT-LET,

Γ `Q let x = e1 in e2 : AT

• case e ≡ Λα.e1: Here,

(T, C) = (Λα.T′1, C1)

(T′1, C1) = ConsGen(Γ, e1)

As AC is valid, AC1 is valid, and so,

Γ `Q e : AT′1 (a)

As Shape(Γ) ` e : σ̇,

α /∈Γ (b)

Thus, by rule LT-GEN,

Γ `Q Λα.e1 : Λα.AT′1

as α /∈ A

implies Γ `Q Λα.e1 : AΛα.T′1

implies Γ `Q Λα.e1 : AT

• case e ≡ e1[τ̇]: Here,

T = T′1[α 7→ Tα]

C = C1 ∪ {Γ � Tα})

(Λα.T′1, C1)ConsGen(Γ, e1)

Tα = Fresh(τ̇)

As AC is valid,

AC1 is valid (a)

Γ � ATα (b)

111

By (a) and IH,

Γ � AΛα.T′1

As α /∈ A, AΛα.T′1 = Λα.AT′1. Thus, by (a) and IH,

Γ � AΛα.T′1 (c)

Thus, by (b), (c), Lemma 2 and rule LT-INST,

Γ `Q e1[τ̇] : AT′1[α 7→ ATα]

as α 6∈ A, Tα /∈ rng(A)

⇒ Γ `Q e1[τ̇] : AT′1[α 7→ Tα]

⇒ Γ `Q e1[τ̇] : AT

Definition 1. (Simple Constraints) A simple constraint is of the form:

• Γ � {ν : t | p}

• Γ ` {ν : t | p1} <: {ν : t | p2}

where p1 and p2 are either refinement predicates or predicate variables with pending substitutions.

Lemma 6. (Constraint Splitting) For every set of constraints C,

1. Split(C) is a set of simple constraints,

2. For every assignment A, AC is valid iff A(Split(C)) is valid.

Proof. For both cases, we prove the lemma when C is a singleton set and then lift to arbitrary

sets. For singleton sets {C}, both cases follow by induction on the structure of C.

Definition 2. (Minimum Solution) For two assignments A and A′ over Q, we say A ≤ A′ if for all κ,

A(κ) ⊇ A′(κ). For C, a set of constraints, A∗ is the minimum solution over Q if

1. A∗C is valid and,

2. For each A over Q, if AC is valid then A∗ ≤ A.

Lemma 7. (Embedding) If A ≤ A′ are two assignments over Q then:

1. Aκ ⇒ Aκ,

112

2. A(θκ)⇒ A(θκ),

3. AΓ⇒ A′Γ.

Proof. Immediate from definition of solution ordering (≤).

Theorem 5. (Minimum Solution) If C has a solution over Q then C has a minimum solution over Q.

Proof. By Lemma 6 it suffices to prove the theorem for sets of simple constraints C. As the number

of liquid type variables and logical qualifiers Q is finite, any C can only have a finite number

of solutions over Q. Suppose that A1, . . . , An are the solutions for C, i.e., for each 1 ≤ i ≤ n, we

have AiC is valid. Then we shall show that:

A∗ = λκ.∩i Ai(κ)

is a minimum solution for C over Q. Trivially, for each i, we have A∗ ≤ Ai. Next, we shall prove

for each simple constraint c ∈ C, that as each Aic is valid, A∗c is also valid.

• case C ≡ Γ � {ν : t | p}: where p is either a predicate φ or a variable with pending

substitutions θκ.

In the first case p ≡ φ,

Ai(Γ � {ν : t | φ})

i.e., φ well-sorted in Shape(AiΓ); ν : t

By Lemma 2, Shape(A∗Γ) = Shape(AiΓ) = Shape(Γ), thus,

φ well-sorted in Shape(A∗Γ); ν : t

i.e., A∗(Γ � {ν : t | φ})

In the second case p ≡ θκ,

Ai(Γ � {ν : t | θκ})

i.e., θAi(κ) well-sorted in Shape(AiΓ); ν : t

i.e., for each φ ∈ Ai(κ),

AiΓ � {ν : t | θφ}

i.e., θφ well-sorted in Shape(AiΓ); ν : t

as A∗(κ) ⊆ Ai(κ) and by Lemma 2, Shape(A∗Γ) = Shape(AiΓ) = Shape(Γ), for each

φ ∈ A∗(κ),

θφ well-sorted in Shape(A∗Γ); ν : t

i.e., A∗(Γ � {ν : t | θκ})

113

• case C ≡ Γ ` {ν : t | p1} <: {ν : t | p2}: where each of p1 and p2 is either a refinement

predicate or a predicate variable with pending substitution.

For each i, Ai(Γ ` {ν : t | p1} <: {ν : t | p2})

i.e., AiΓ � Ai p1 ⇒ Ai p2

by the properties of implication,

∧i AiΓ � ∧i Ai p1 ⇒ ∧i Ai p2

as [[A∗Γ]] = [[∧i AiΓ]] and [[A∗p1]] = [[∧i Ai p1]] and [[A∗p2]] = [[∧i Ai p2]], we have:

A∗Γ � A∗p1 ⇒ A∗p2

i.e., A∗(Γ ` {ν : t | p1} <: {ν : t | p2})

Lemma 8. (Refinement) If A′ = Refine(A, C) then:

1. A ≤ A′,

2. if AC is not valid, then A 6= A′,

3. if A′′C is valid and A ≤ A′′ then A′ ≤ A′′.

Proof. 1. From the definition of Refine, we have:

A′ ≡ SolUpd(A, κc, A(κ) ∩Q′)

for some κc and Q′. We shall show that for any κ, we have A′(κ) ⊆ A(κ).

Consider κ 6= κc. Here A′(κ) = A(κ) ⊆ A(κ).

Consider κ = κc. Here A′(κ) = A(κ) ∩Q′ ⊆ A(κ).

2. We split cases on the type of constraint used for refinement, and in each case, show that if

A′ = A then Ac must be valid.

• case C ≡ Γ � {ν : t | p}: where p is a refinement predicate or a predicate variable

with pending substitutions. From the definition of Refine, we have:

A′p well-sorted in Shape(AΓ); ν : bool

If A = A′ then,

Ap well-sorted in Shape(AΓ); ν : bool

i.e., AC is valid.

114

• case C ≡ Γ � p⇒ θκc: From the definition of Refine, we have:

AΓ � Ap⇒ θA′(κc)

If A = A′ then,

AΓ � Ap⇒ θA(κc)

i.e., AC is valid.

3. We split cases on the type of constraint used for refinement.

• case C ≡ Γ � {ν : t | p}: where p is an expression or a refinement predicate variable

with pending substitutions. We have,

A′′C is valid (a)

∀κ.A′′(κ) ⊆ A(κ) (b)

as A ≤ A′′. From the definition of Refine, we have:

A′ ≡ SolUpd(A, κc, A(κ) ∩Q′) (c)

Q′ ≡{φ | φ ∈ Q, φ well-sorted in Shape(Γ); ν : t} (d)

for some κc. We shall show that for any κ, we have A′′(κ) ⊆ A′(κ).

Consider κ 6= κc. From (b)

A′′(κ) ⊆A(κ) = A′(κ)

Consider κ = κc. Now (a) implies that

for each φ ∈ A′′(κc), φ ∈ Q, andφ well-sorted in Shape(Γ); ν : t

i.e., for each φ ∈ A′′(κc), φ ∈ Q′

From (b),

A′′(κc) ⊆A(κc) ∩Q′ = A′(κc)

115

• case C ≡ Γ � p⇒ θκc: We have,

A′′C is valid (a)

∀κ.A′′(κ) ⊆ A(κ) (b)

as A ≤ A′′. From the definition of Refine, we have:

A′ ≡ SolUpd(A, κc, A(κ) ∩Q′) (c)

Q′ ≡{φ | φ ∈ Q and AΓ � Ap⇒ θφ} (d)

We shall show that for any κ, we have A′′(κ) ⊆ A′(κ).

Consider κ 6= κc. From (b)

A′′(κ) ⊆A(κ) = A′(κ)

Consider κ = κc. Now (a) implies that

for each φ ∈ A′′(κc), φ ∈ Q, andA′′Γ � A′′p⇒ θφ

As A ≤ A′′, from Lemma 7 we have

[[AΓ]]⇒[[A′′Γ]]

[[Ap]]⇒[[A′′p]]

i.e., [[AΓ]] ∧ [[Ap]]⇒[[A′′Γ]] ∧ [[A′′p]]⇒

and so,

for each φ ∈ A′′(κc), φ ∈ Q, andA′′Γ � A′′p⇒ θe

i.e., for each φ ∈ A′′(κc), φ ∈ Q′

i.e., A′′(κc) ⊆Q′

From (b),

A′′(κc) ⊆A(κc) ∩Q′ = A′(κc)

Theorem 6. (Constraint Solving) For every set of constraints C and qualifiers Q,

1. Solve(C, λκ.Q) terminates,

116

2. if Solve(C, λκ.Q) returns A then A is the minimum solution for C over Q,

3. if Solve(C, λκ.Q) returns ⊥ then C has no solution over Q.

Proof. 1. To prove that Solve terminates, we associate a well-founded measure with solutions

and show that in each iteration of the refinement loop, the potential of the solution A

strictly decreases. Let,

MA ≡∑
κ

‖A(κ)‖

where ‖A(κ)‖ is the cardinality of A(κ). Consider any loop iteration. From the definition

of Solve, we know that the constraint C chosen for refinement is such that AC is not valid.

Let A′ be the refined solution returned by calling Solve(A, C). By Lemma 8,

A ≤A′

A 6=A′

Thus, by the definition of ≤, we have MA′ < MA, i.e., the potential of the solution strictly

decreases in the iteration. As the potential is non-negative, Refine must terminate.

2. Assume that Solve returns a solution A. Then AC is valid (as otherwise the loop would

finish), and so by Theorem 5, C has a minimum solution A∗ over Q. To prove that the re-

turned solution is the same as A∗, we show by induction over n that after n iterations of the

loop in Solve, the solution A ≤ A∗. In the base case, A has the initial assignment mapping

each liquid type variable to Q and thus A is less than every solution over Q, including A∗.

Let us assume the induction hypothesis, that after n iterations, A ≤ A∗. The value of A

after n + 1 iterations is Refine(A, C) where A is the solution after n iterations. As A∗C is

valid (A∗ is the minimum solution for C over Q, and A ≤ A∗ (by the induction hypothesis),

from Lemma 8, we deduce that Refine(A, C) ≤ A∗, and so after n + 1 iterations, A ≤ A∗.

Thus, if A is the solution returned by Solve, then A ≤ A∗. As A∗ is the minimum solution

over Q, and A is a valid solution, A = A∗.

3. Suppose that Solve fails,but that there is a valid solution for C over Q. Then, there exists a

minimum solution A∗ over Q, and by the reasoning above, at each iteration, A ≤ A∗. By

the definition of Refine, the outcome ⊥ only happens when A and the constraint C are such

that C ≡ Γ � p ⇒ φ, where p is either a predicate or a predicate variable with pending

substitutions, and:

AΓ � Ap 6⇒ φ

117

Now, as A ≤ A∗, by Lemma 7, we have

[[AΓ]]⇒ [[A∗Γ]]

[[Ap]]⇒ [[A∗p]]

and therefore,

A∗Γ � A∗p 6⇒ φ

i.e., A∗C is not valid, which is a contradiction, and so there is no valid solution for C over

Q.

Proof. (of Theorem 2) Immediate corollary of Theorems 4 and 6.

Appendix B

Dynamic Semantics of NANOC

In this chapter, we give a standard small-step, call-by value semantics for our core

low-level language, NANOC.

B.1 Reference Values

The program syntax of section 3.2 is meant to describe source-level programs. However,

as a program executes, it produces values of reference type, which are not accounted for in our

syntax of values. Thus, we add reference values to the syntax of values:

v ::= Values

| . . .

| ref(r, n) constant pointer

A reference value ref(r, n) represents a pointer to run-time location r at offset n from the start of

the location r. We assume locations r are drawn from a countable, totally-ordered set of run-time

heap locations, RLoc.

B.2 Semantics

For clarity, we assume that the global environment G is threaded through the evaluation

rules, and thus omit the global environment from the rules. The rules for evaluating programs

use a mapping D from function names to their body expressions.

Definition 3 (Run-Time Block). A run-time block c is a partial function from natural number offsets

to values:

c : N ⇀ v.

118

119

n|w| ◦m|w| ↪→ (n ◦m)|w| E-ARITH

ref(r, n) +p m|W| ↪→ ref(r, n + m) E-PTR-PLUS

0|W| +p m|W| ↪→ 0|W| E-NULL-PLUS

v1 ./ v2 ↪→ 1|W| if Comparable(v1, v2), v1 ./ v2 E-REL-TRUE

v1 ./ v2 ↪→ 0|W| if Comparable(v1, v2),¬(v1 ./ v2) E-REL-FALSE

Figure B.1: Small-step semantics of pure NANOC expressions

Definition 4 (Run-Time Store). A run-time store s is a map from run-time location names r to run-time

blocks c:

s : r ⇀ c.

Definition 5 (Comparable Values). Values v1, v2 are comparable, written Comparable(v1, v2), if

and only if one of the following holds:

• v1 = n1|w|, v2 = n2|w|

• v1 = ref(r1, n1), v2 = ref(r2, n2)

• v1 = 0|W|, v2 = ref(r, n)

• v1 = ref(r, n), v2 = 0|W|

Definition 6 (Value Comparisons). We define the behavior of the comparison operators as follows:

• w|n| ./ w|m| iff n ./ m

• W|0| < ref(r, n) for all r, n

• ref(r1, n) ./ ref(r2, m) iff (r1, n) ./ (r2, m) lexicographically

• All relations between comparable values (as defined by Definition 5) that are not explicitly specified

satisfy the appropriate laws (e.g., = is always an equivalence relation on comparable values).

Relations between non-comparable values are left unspecified.

Definition 7 (Type Sizes). We obtain the size of a type τ, written SizeOf(τ), as

SizeOf(int(w, i)) = w

SizeOf(ref(`, i)) = W

SizeOf({ν : t | φ}) = SizeOf(t).

120

Definition 8 (Value Sizes). We define the size of a value, written SizeOf(v), as

SizeOf(n|w|) = w

SizeOf(ref(r, n)) = W

Definition 9 (Fitting Data Into Blocks). We define a predicate, Fits, which determines when a value of

size m fits in a run-time block c when stored at offset n:

Fits(n, m, c) = {n . . . n + m− 1} ⊆ dom(c)

Definition 10 (Block Value Updates). We define a function, Write, which computes the block resulting

from updating the block c to contain the value v at offset n:

Write(c, n, v) = c[n 7→ v][(n + 1 . . . SizeOf(v)− 1) 7→ 0|1|]

121

E-PURE

a ↪→ a′

a/s ↪→ a′/s

E-SEQ

e1/s ↪→ e′1/s′ e1 not a value

let x = e1 in e2/s ↪→ let x = e′1 in e2/s′

E-LET

let x = v in e/s ↪→ e[x 7→ v]/s

E-IF-TRUE

n 6= 0

if n|W| then e1 else e2/s ↪→ e1/s

E-IF-FALSE

if 0|W| then e1 else e2/s ↪→ e2/s

E-READ

v = s(r)(n) SizeOf(v) = m Fits(n, m, s(r))

∗mref(r, n)/s ↪→ v/s

E-WRITE

Fits(n, SizeOf(v), s(r))

∗ref(r, n) := v/s ↪→ 0|0|/s[r 7→Write(s(r), n, v)]

E-CALL

G(f) = f (x) { e }

f (v)[` f 7→ `]/s ↪→ e[` f 7→ `][x 7→ v]/s

E-MALLOC

n ≥ 0 r /∈ dom(s)

malloc(n|W|)/s ↪→ ref(r, 0)/s[r 7→ ([0, n) 7→ 0|0|)]

E-UNFOLD

letu x = unfold ref(r, n) in e/s ↪→ e[x 7→ ref(r, n)]/s

E-FOLD

fold `/s ↪→ 0|0|/s

Figure B.2: Small-step semantics of effectful NANOC expressions

122

E-FUN

P/s ↪→D[f 7→e] e′/s

f (xj) { e } P/s ↪→D e′/s′

E-PROGRAM

e/s ↪→D e′/s′

e/s ↪→D e′/s′

Figure B.3: Small-step semantics of NANOC programs

Appendix C

Soundness of

NANOC Type Checking

In this chapter, we give a proof of type soundness for the NANOC language and associ-

ated refinement type system. We begin with an overview of our approach to proving soundness,

paying special attention to those aspects of the proof which are unconventional.

C.1 Proof Overview

At a high level, the proof follows the standard format: we prove the usual progress and

preservation lemmas, thus ensuring that every well-typed, closed expression either evaluates to

a value or does not terminate. However, the presence of a mutable heap, along with the unfold

and fold expressions which facilitate strong updates to the types of heap locations, requires us to

add extra machinery to relate the run-time store arising from evaluating an expression to the

static heap type used to type the expression.

The key element of the soundness proof is the heap modeling relation, s �m h (Defini-

tion 23), read “run-time store s models the heap h, where m is a correspondence between run-time

store locations r and concrete location names `j”. Intuitively, this relation says that the contents

of each block in the run-time store s satisfy a type given by a block type in the heap type h. Which

block type that is is specified by the location map m (Definition 18), which maps concrete location

names to their corresponding run-time location names. (Recall that our concrete locations are

meant to correspond to exactly one run-time location.) If a run-time location has a corresponding

concrete location `j in the heap type h — that is, the location is currently unfolded — the run-time

block corresponding to that location must satisfy the block type bound to `j in the heap type h.

Otherwise, the location is not unfolded, and the run-time block corresponding to that location

123

124

must have the type specified by the corresponding abstract location in h. The key to showing

type preservation is demonstrating that this heap modeling relation is preserved through location

unfolds and folds (T-UNFOLD and T-FOLD), heap reads and writes (T-READ, T-SUPD, T-WUPD),

and memory allocations (T-MALLOC).

In addition to establishing a correspondence between run-time stores and heap types,

location maps m are used to assign types to pointer-valued constants, which do not appear in

user code but arise as a result of evaluation: they are created by calls to malloc and pointer

arithmetic operations. Thus, we add the current location map m as an additional parameter of

the typing judgment in our updated, proof-oriented typing rules, shown in Figure C.2. A pointer

value that points to run-time location r can be typed as a reference to any concrete location `j

such that the location map m maps `j to r. As evaluation proceeds and new concrete locations

are either allocated with malloc or unfolded with unfold, we introduce new mappings into the

location map m. In order to prove preservation, we require that m grows monotonically, i.e.,

mappings from concrete location names to run-time location names are only ever added after a

step of evaluation; this ensures that every pointer value can be given the same type both before

and after a step of evaluation.

The type checking rules of Section 3.2.3 require that certain concrete location names

used in derivations are “fresh”; to put our proof on firm footing, we must specify exactly

what it means for a location name to be fresh. It is important that concrete location names

assigned to freshly-allocated or unfolded locations are fresh so that every concrete location name

corresponds to exactly one run-time location throughout the course of evaluation, which is the

crucial requirement for our strong update reasoning to be sound. This restriction is reflected in

the proof by our requirement that the location map m is a function, and thus a concrete location

name can only be assigned a single run-time location at a given point in evaluation, and that,

after a step of evaluation, the location map with which we type the result must include m, so that,

in the course of evaluating a program, a single concrete location name is never assigned to two

different run-time locations.

We can satisfy these requirements if, when we require a fresh concrete location name,

we choose a name which is not in the domain of the current location map, m; this ensures that,

after a step of evaluation, we can grow the location map, instead of having to replace a binding

for an existing location name. However, this restriction alone is not sufficient. Suppose we run

expressions e1 and e2 in sequence, and our current location map is m. Suppose that we evaluate e1

to e′1, and evaluating e1 unfolds a new concrete location `j. In order to type the resulting sequence

expression e′1; e2, we must expand our location map m to include a binding for `j. However, we

know only that e2 was typable in m, which did not include a binding for `j; if we do not make

any further restrictions, it may be the case that our initial type derivation for e2 used the “fresh”

location `j, so that if we add `j to the location map, that location is no longer fresh and so e2 is

not typable in the expanded location map.

125

To resolve this problem, we update our typing rules to ensure that two expressions which

are evaluated in sequence must use disjoint sets of location names (Figure C.2). We parameterize

the typing relation by a countably infinite set of concrete location names, I. Our rule for sequence

expressions, T-LET, enforces the restriction that sequenced expressions e1 and e2 use disjoint

concrete location names by typing e1 with name set I1 and e2 with name set I2, where I1 ∩ I2 = ∅.

Our preservation lemma ensures that, after a step of evaluation, any concrete locations which

must be added to the location map in order to type the resulting expression are be included in

the name set used to type the original expression, so that the situation described in the preceding

paragraph cannot arise: if a concrete location is unfolded in e1, it cannot have been used in the

type derivation of e2, since the expressions must have been typed with disjoint sets of location

names.

Our proof rests on a complement of substitution lemmas concerning well-formedness,

subtyping, and typing. We use standard value substitution lemmas to eliminate free variables

from environments; these lemmas are used in the proofs of preservation for let, unfold, and

function call expressions. Because our function types are polymorphic in the names of the

heap locations over which they operate, proving preservation in the T-CALL case requires us

to prove a series of location name substitution lemmas. Note that we cannot prove that heap

well-formedness is preserved by arbitrary location name substitutions: if a substitution maps

two location names to a single location name, then a well-formed heap may become ill-formed,

as it may now contain two bindings for the same location. Instead, we show that location name

substitutions preserve heap well-formedness if they are injective on the location names bound in

the heap, i.e., they do not map two distinct location names to the same name. Finally, because

the sets of fresh names used to type check a function and the sets of fresh names available in

the calling context of a function may differ, we must use substitution to prove type preservation

after a function call in two steps. First, we prove that, since both sets of concrete location

names involved are countably infinite, we may consistently substitute location names in the type

derivation of the callee to obtain a substituted version of the function’s type which uses the set

of fresh names available in the calling context. Second, we use the fact that function types may

not contain concrete locations to eliminate the concrete name substitutions, thus showing type

preservation after a function call.

Our type preservation lemma (Lemma 94) incorporates all of the above concerns. We

assume a closed, well-typed expression e, which is typable using location map m and a well-

formed initial heap h, and suppose that s is a run-time store that models h using location map

m. We show that if we take a step of evaluation, yielding expression e′ and store s′, then there

is a heap hs and location map m′ such that the s′ models hs under m′, hs is well-formed, and m′

includes m, such that e′ is typable in then empty environment and heap hs under location map

m′. We further stipulate that any newly-bound concrete location names added to m′ must have

come from the set of location names initially used to type e, which, as we have explained above,

126

is useful in proving preservation in the T-LET case.

To make the proof of preservation for certain rules easier, we make a (results-preserving)

simplification to the dynamic semantics of NANOC (Section C.2.1): we assume that every

run-time block contains a binding for all offsets, rather than some finite region determined

by the number of bytes that were requested in a call to malloc. This change means that the

dynamic semantics can no longer perform bounds checking by checking the domains of run-time

blocks; instead, our syntax of constant pointer values uses fat pointers, which carry their bounds

information as part of the pointer, and our revised evaluation rules for memory access expressions

(Figure C.1) check these bounds at each access. These changes permit three simplifications in

the proof and associated definitions. First, we note that an allocated location may not be large

enough to hold all the items specified in its block type — for example, a block type may specify a

type for the value at offset 10, yet the program may allocate only 8 bytes to a location which has

this type. This would complicate the block modeling relation (Definition 22), which determines

when a run-time block satisfies a block type; because the field types within a block type may

depend on the values defined at non-sequence offsets within the same block, the block modeling

relationship is much simpler if we can assume that these values are always defined. Second,

the proof of preservation for the T-UNFOLD rule crucially relies on being able to substitute in

concrete values for each of the fresh variables introduced to represent the values at non-sequence

offsets within the unfolded block; the theory is again much simpler if we can always assume

that such values exist. Finally, using fat pointers allows us to give a simple, straightforward

definition of the block boundary functions BBegin and BEnd (Assumption 14), which can now

be defined as functions on pointer values, without any reference to heap types or stores. We

prove that these simplifications do not alter the behavior of programs in any significant way

(Lemma 13): terminating expressions yield exactly the same values in either semantics, modulo

the difference between fat and thin pointers, and the resulting stores contain the same values,

modulo the contents of the out-of-bounds portions of the run-time store.

The progress lemma (Lemma 96) is more standard: We show that, if an expression e is

typable with initial heap h and location map m, and if s models h under m, then the expresion

is either a value or may take a step of evaluation. The refinement validity lemma (Lemma 27)

guarantees that, whenever a pointer is dereferenced, it is non-null and within bounds. Heap

modeling guarantees that the location that the pointer refers to actually exists in the run-time

store.

Together, the above lemmas imply that closed, well-typed expressions cannot get stuck,

but must evaluate to a value or loop forever (Theorem 7). That no well-typed, closed expression

can get stuck has three important consequences in our system. First, all memory accesses are to

non-null pointers that are within an allocated region of memory. Second, all primitive operators

(arithmetic, pointer arithmetic, and relations) are provided with valid operands. Finally, the

physical type system ensures that there are never any partial field reads or writes or “overlaps”

127

between fields in the heap: every read or write to the heap accesses an entire contiguous field,

and the fields at each offset within a block are disjoint.

C.2 Changes to the Base Language

To begin, we make several small alterations to NANOC to make the soundness proof

easier, and show that these changes do not affect program execution in any significant way.

C.2.1 Dynamic Semantics

In the dynamic semantics of NANOC given in Appendix B, each allocated run-time block

has the domain [0, n), where n is the number of bytes allocated to the block by a call to malloc.

This accurately reflects the fact that a program may not access a run-time block with an out-of-

bounds index. Further, reference values are of the form ref(r, n), for some run-time location r

and offset into the location n. This accurately reflects the conventional run-time representation of

“thin” pointers that do not carry bounds information.

For the purposes of the soundness proof, however, we make two simplifying changes to

the semantics of programs and run-time pointer representation. First, we assume that run-time

block has the domain Z, i.e., each block is defined at every possible offset. This simplifies the

block modeling relation, which establishes a correspondence between run-time stores and heap

types, as well as the cases for T-UNFOLD and T-MALLOC within the preservation lemma, which

may freely assume that every run-time block is defined at every possible offset. Second, we

change the representation of run-time reference values so that each reference contains the length

of the run-time block where it points. This has two effects. First, it simplifies the definitions of

the BBegin and BEnd predicates, which can now be defined on reference values directly, without

reference to a particular run-time store. Second, it allows us to perform bounds checks in the

simplified semantics by using the bounds information contained within the reference itself;

this will allow us to show that the simplified and original semantics permit exactly the same

evaluations, proving that our simplifications are sound.

We formalize these simplifications in two steps. First, we update the evaluation relation

↪→ to operate on reference values which carry their bounds; note that, while the updated

↪→ propagates these bounds, it does not use them to enforce memory safety, and they may

safely be erased. We then create a new evaluation relation, , whose evaluation rules for

heap reads, writes, and allocations incorporate our assumption that every run-time block is

infinitely large and use the bounds information contained in reference values to enforce bounds

safety. The updated rules and values are shown in in Figure C.1. The remaining rules for the

evaluation relation are unchanged from ↪→, modulo the substitution of for ↪→. We give a

bisimulation establishing that expressions have the same behavior under both ↪→ and , modulo

128

v ::= Values

x variable

| n|w| integer

| bref(r, n, z) constant pointer with bound

bref(r, n, z) +p m|W| ↪→ bref(r, n + m, z) PE-PTR-PLUS

PE-READ

0 ≤ n n + m− 1 < z v = s(r)(n)

∗mbref(r, n, z)/s ↪→ v/s

PE-WRITE

0 ≤ n n + SizeOf(v)− 1 < z

∗bref(r, n, z) := v/s ↪→ 0|0|/s[r 7→Write(s(r), n, v)]

PE-MALLOC

z > 0 r /∈ dom(s)

malloc(z|W|)/s ↪→ bref(r, 0, z)/s[r 7→ (Z 7→ 0|0|)]

Figure C.1: Updated reference values and semantics for NANOC

the (inaccessible) contents of the out-of-bounds portions of the run-time store. (We note, without

proof, that bounds information does not figure in to evaluation in the original semantics, and

may be safely erased once safety has been established.)

Definition 11 (Store Similarity). Stores s1 and s2 are similar, written s1 ∼ s2, if

1. dom(s1) = dom(s2)

2. ∀r ∈ dom(s1), n ∈ dom(s1(r)). s1(r)(n) = s2(r)(n).

Definition 12 (Reference-Store Consistency). We say a reference value v = bref(r, n, z) is consistent

with store s, written s � v, if dom(s(r)) = [0, z).

We say pure and impure expressions a and e are consistent with store s, written s � a and s � e,

respectively, if every value v contained in the expression is consistent with s.

Lemma 9 (Store-Consistent Substitution). For any store s and reference value v,

1. If s � a and s � v, then s � a[x 7→ v].

2. If s � e and s � v, then s � e[x 7→ v].

129

Proof. Each case proceeds by straightforward induction on the structure of the expression.

Lemma 10 (Store Consistency Preservation). For all stores s, pure expressions a, and impure expres-

sions e,

1. If s � a and a ↪→ a′ then s � a′.

2. If s � e and e/s ↪→ e′/s′ then s′ � e′.

Proof. The first case proceeds by cases on the evaluation rule used.

The second case proceeds by straightforward induction on the derivation of e/s ↪→ e′/s′,

using the first case and Lemma 9. Additionally, the T-CALL case uses the assumption that source

programs do not contain reference constants, and hence that s � e f trivially holds for every

function body e f .

Lemma 11 (Offsets Fit If And Only If In Reference Bounds).

If v = bref(r, n, z)

and s � v (11.1)

then Fits(n, m, s(r)),

if and only if 0 ≤ n

and n + m− 1 < z.

Proof. By Fact 11.1 and Definition 12,

dom(s(r)) = [0, z).

Both directions follow immediately from Definition 9.

Lemma 12 (Consistent Update Preserves Store Similarity). If s1 ∼ s2, then

s1[r 7→Write(s1(r), n, v)] ∼ s2[r 7→Write(s2(r), n, v)].

Proof. The proof is straightforward from Definition 11.

Lemma 13 (Bisimulation Between Proof and Ordinary Semantics).

If s1 ∼ s2, (13.1)

and s1 � e, (13.2)

then e/s1 ↪→ e′/s′1

if and only if e/s1 e′/s′2,

with s′1 ∼ s′2.

130

Proof. Both directions proceed by straightforward induction on the derivation of the hypoth-

esized evaluation step, splitting cases on the final rule used. We show the forward direction

first.

Case e/s1 ↪→ e′/s′1
The only interesting cases are E-READ, E-WRITE, and E-MALLOC.

Case E-READ

By the form of the rule,

e ≡ ∗mbref(r, n, z) (13.3)

v = s1(r)(n) (13.4)

Fits(n, m, s1(r)) (13.5)

e′ ≡ v (13.6)

s′1 = s1 (13.7)

By Fact 13.2 and Definition 12,

dom(s(r)) = [0, z) (13.8)

By Fact 13.2, Fact 13.5, and Lemma 11,

0 ≤ n (13.9)

n + m− 1 < z (13.10)

By Fact 13.1, Fact 13.4, and Definition 11,

s2(r)(n) = v (13.11)

By Fact 13.3, Fact 13.9, Fact 13.10, Fact 13.11, and PE-READ,

e/s e′/s′2

with

s′2 = s2

so that, by Fact 13.7 and Fact 13.1,

s′1 ∼ s′2

131

as required.

Case E-WRITE

By the form of the rule,

e ≡ ∗bref(r, n, z) := v (13.12)

Fits(n, SizeOf(v), s(r)) (13.13)

e′ ≡ 0|0| (13.14)

s′1 = s1[r 7→Write(s1(r), n, v)] (13.15)

By Fact 13.2, Fact 13.13, and Lemma 11,

0 ≤ n (13.16)

n + SizeOf(v)− 1 < z (13.17)

By Fact 13.16, Fact 13.17, and PE-WRITE,

e/s2 e′/s′2

where

s′2 = s2[r 7→Write(s2(r), n, v)] (13.18)

By Fact 13.14, Fact 13.18, and Lemma 12,

s′1 ∼ s′2

as required.

Case E-MALLOC

By the form of the rule,

e ≡ malloc(n|W|) (13.19)

n > 0 (13.20)

r /∈ dom(s1) (13.21)

e′ ≡ bref(r, 0, n) (13.22)

s′1 = s1[r 7→ ([0, n) 7→ 0|0|)] (13.23)

By Fact 13.1, Fact 13.21, and Definition 11,

r /∈ dom(s2) (13.24)

132

By Fact 13.19, Fact 13.20, Fact 13.24, and E-MALLOC,

e/s2 e′/s′2

where

s′2 = s2[r 7→ ([0, n) 7→ 0|0|)] (13.25)

By Fact 13.1, Fact 13.23, Fact 13.25, and Definition 11,

s′1 ∼ s′2

as required.

Case e/s2 e′/s′2
This direction is nearly identical to the other, but uses the reverse direction of Lemma 11.

Lemma 14 (Similar Executions). For any expression e such that ∅ � e,

e/∅ ↪→∗ e′/s1

if and only if e/∅ ∗ e′/s2

with s1 ∼ s2.

Proof. The proof proceeds by straightforward induction on the hypothesized derivation, using

Lemma 10 and Lemma 13.

C.2.2 Static Semantics

The typing rules of section 3.2 are sufficient to type check source-level programs. How-

ever, to prove the standard progress and preservation lemmas, we must enhance the language’s

typing judgments to account for reference-valued constants that appear in the course of evalua-

tion as the result of allocating memory. We update the rules of Section 3.2.3 in two ways. First,

to formalize the notion of what it means for a name to be “fresh”, we thread a countable set of

fresh names, I, through the rules. Note that each variable I is meant to represent an infinite set

of names. Second, we add another parameter to the typing judgment, m, which is described in

section C.5; its purpose is to allow us to assign types to constant reference values bref(r, n, z). We

show the new and non-trivially-updated rules in Figure C.2; all rules not shown are the same as

in Section 3.2.3, except that m and I have been threaded through the derivation.

133

Updated Pure Typing Rules Γ `m a : τ

` ∈ Clocs(r, m)

Γ `m bref(r, n, z) : {ν : ref(`, n) | ν = bref(r, n, z)}
T-REF

Updated Impure Typing Rules G, Γ, h `m, I e : τ/h2

Γ `m v : int(W, i) G, Γ; v 6= 0, h `m, I e1 : τ/h′ G, Γ; v = 0, h `m, I e2 : τ/h′

G, Γ, h `m, I if v then e1 else e2 : τ/h′
T-IF

G, Γ, h `m, I1 e1 : τ1/h1

G, Γ; x : τ1, h1 `m, I2 e2 : τ2/h2 Γ � τ2/h2 I1 ∩ I2 = ∅

G, Γ, h `m, I1∪I2 let x = e1 in e2 : τ2/h2

T-LET

Γ `m v : {ν : ref(
∼
` , iy) | ν 6= 0} h = h0 ∗

∼
` 7→ nk : τk, i+ : τ+

xk disjoint xk /∈ Γ, e, FV(h) θ = [@nk 7→ xk]

Γ1 = Γ; xk : θτk `j /∈ Γ, h, m h1 = h ∗ `j 7→ nk : {ν = xk}, i+ : θτ+

G, Γ1; x : {ν : ref(`j, iy) | ν = v}, h1 `m, I e : τ2/h2 Γ1 � h1 Γ � τ2/h2

G, Γ, h `m, I∪{`j} letu x = unfold v in e : τ2/h2

T-UNFOLD

`j /∈ Γ, h, m h = h0 ∗
∼
` 7→ b Γ � h ∗ `j 7→ b

Γ `m v : {ν : int(W, i) | ν > 0} τ = {ν : ref(`j, 0) | Allocated(ν, v)}

G, Γ, h `m, I∪{`j} malloc(v) : τ/h ∗ `j 7→ b0
T-MALLOC

Figure C.2: Updated typing rules for NANOC expressions

C.3 Logical Embedding

We assume a multi-sorted logic, with the sorts int(w) and ref, corresponding to w-byte

integer-valued data and pointer-valued data, respectively. We use the metavariable s to stand in

for sorts.

Definition 13 (Embedding Environments as Predicates). We embed environments Γ into our refine-

ment logic as

[[Γ]] ≡
∧
{φ | φ ∈ Γ} ∧

∧
{φ[ν 7→ x] | x : {ν : t | φ} ∈ Γ}.

Definition 14 (Sorts from Types). The corresponding sort for a refinement type is given by

Sort({ν : int(w, i) | φ}) = int(w)

Sort({ν : ref(`, i) | φ}) = ref

134

Definition 15 (Sort Environments from Type Environments). We create a sort environment from a

type environment using the operation SortEnv:

SortEnv(∅) = ∅

SortEnv(x : τ; Γ) = x : Sort(τ); SortEnv(Γ)

SortEnv(a; Γ) = SortEnv(Γ)

Definition 16 (Well-Sorted Refinement Predicates). We say that φ well-sorted in Γ if φ is a well-

sorted predicate in the refinement logic under the sort environment SortEnv(Γ). A well-sorted predicate

may not contain any offset expressions @n.

C.4 Concrete Name Sets

In this section, we give lemmas and definitions concerning the substitution of concrete

location names.

Assumption 7 (Disjoint Concrete Location Numberings). We assume that, for any concrete location

set I, if `j, `′k ∈ I, then j 6= k. In particular, this means that, for any location name substitution ρ,

ρ(`j) 6= ρ(`′k).

Definition 17 (Concrete Name Substitution). A concrete name substitution ω is a injective function

on concrete location names,

ω : CLoc→ CLoc,

where CLoc is the set of all concrete location names. We require that concrete name substitutions preserve

location names, i.e., that ω(`j) = `k for some k.

Lemma 15 (Concrete Name Substitution: Well-Formedness). For any concrete name substitution ω,

1. If Γ � τ, then ωΓ � ωτ.

2. If Γ � b, then ωΓ � ωb.

3. If Γ �@ b, then ωΓ �@ ωb.

4. If Γ � h, then ωΓ � ωh.

5. If Γ � τ/h, then ωΓ � ωτ/ωh.

Proof. The first case proceeds by cases on the rule used to prove Γ � τ, while the next three cases

proceed by straightforward induction on the hypothesized derivation, splitting cases on the final

rule used. The final case is immediate from the previous cases.

Lemma 16 (Concrete Name Substitution: Subtyping). For any concrete name substitution ω,

135

1. If Γ ` τ1 <: τ2, then ωΓ ` ωτ1 <: ωτ2.

2. If Γ ` b1 <: b2, then ωΓ ` ωb1 <: ωb2.

3. If Γ ` h1 <: h2, then ωΓ ` ωh1 <: ωh2.

4. If Γ ` τ1/h1 <: τ2/h2, then ωΓ ` ωτ1/ωh1 <: ωτ2/ωh2.

Proof. Each proof proceeds by induction on the structure of the hypothesized derivation, splitting

cases on the final rule used and using the previous cases of the lemma.

Lemma 17 (Concrete Name Substitution: Pure Typing).

If Γ `m a : τ

then ωΓ `ωm a : ωτ

Proof. The proof proceeds by straightforward induction on the derivation of Γ `m a : τ, splitting

cases on the final rule used, and using Lemma 15 and Lemma 16.

Lemma 18 (Concrete Name Substitution: Typing).

If G, Γ, h `m, I e : τ/h

then G, ωΓ, ωh `ωm, ωI e : ωτ/ωh

Proof. The proof proceeds by straightforward induction on the derivation of

G, Γ, h `m, I e : τ/h,

splitting cases on the final rule used and using Lemma 15, Lemma 16, and Lemma 17. We also

use the fact that ω is injective to guarantee that concrete name sets which were distinct in the

original derivation remain so in the updated derivation.

Lemma 19 (Concrete Name Set Weakening).

If G, Γ, h `m, I1 e : τ/h′

and I1 ⊆ I2,

then G, Γ, h `m, I2 e : τ/h′

Proof. The proof proceeds by straightforward induction on the derivation of

G, Γ, h `m, I1 e : τ/h′,

splitting cases on the final rule used.

136

C.5 Relating Run-Time Stores and Heap Types

Definition 18 (Location Map). A location map is a function m : CLoc→ RLoc from concrete location

names to run-time location names.

The initial location map is the empty function ∅.

Definition 19 (Concrete Locations of a Run-Time Location). Given a run-time location r and a

location map m, we define the set of concrete locations corresponding to r, Clocs, as the inverse image of r

under m:

Clocs(r, m) = m−1(r)

Definition 20 (Location Map Well-Formedness). A location map m is well-formed, written � m, iff

for all r ∈ rng(m), if `j, `′k ∈ Clocs(r, m), then ` = `′.

Definition 21 (Location Order). We define an ordering on location names, `1 v `2, as the smallest

reflexive, transitive relation satisfying `j v
∼
` .

Definition 22 (Block Modeling). We define when a run-time block c models block type b under location

map m, written c �m b, according to the following inference rules:

∅ `m c(n) : τ c �m b[@n 7→ c(n)]

c �m n : τ, b
BM-SINGLE

∀n ∈ dom(c) ∩ [[i+]]. ∅ `m c(n) : τ c �m b

c �m i+ : τ, b
BM-SEQUENCE

Definition 23 (Heap Modeling). Run-time store s models heap type h under location map m, written

s �m h, iff

1. ∀`j ∈ dom(h). `j ∈ dom(m)

2. rng(m) ⊆ dom(s)

3. For all r 7→ c ∈ s, exists `j ∈ Clocs(r, m), and either

(a) h = h1 ∗ `j 7→ b ∗ h2, and c �m b, or

(b) Clocs(r, m) ∩ dom(h) = ∅, h = h1 ∗
∼
` 7→ b ∗ h2, and c �m b.

We use the following lemma to justify reordering a heap’s bindings as needed to make

the proof’s notation simpler:

Lemma 20 (Location Order is Irrelevant in Heap Modeling). s �m h1 ∗ h2 if and only if s �m h2 ∗ h1.

Proof. Immediate from Definition 23.

Lemma 21 (Location Map Weakening: Pure Typing). If Γ `m1 a : τ and m1 ⊆ m2, then Γ `m2 a : τ.

137

Proof. The proof proceeds by induction on the derivation of Γ `m1 a : τ, splitting cases on the

final rule used.

The only interesting case is T-REF. By the form of the rule,

a ≡ bref(r, n, z)

τ = {ν : ref(`, n) | ν = bref(r, n, z)}

` ∈ Clocs(r, m1) (21.1)

Since m1 ⊆ m2,

Clocs(r, m1) ⊆ Clocs(r, m2) (21.2)

So by Fact 21.1, Fact 21.2, and T-REF,

Γ `m2 bref(r, n, l) : {ν : ref(`, n) | ν = bref(r, n, z)}

as required.

Lemma 22 (Location Map Weakening).

If G, Γ, h `m1, I e : τ/h′,

m1 ⊆ m2,

and dom(m2 \m1) ∩ I = ∅,

then G, Γ, h `m2, I e : τ/h′.

Proof. The proof proceeds by induction on the derivation of G, Γ, h `m1, I e : τ/h′, splitting

cases on the final rule used. The requirement that dom(m2 \m1) ∩ I = ∅ is used in the cases

for T-UNFOLD and T-MALLOC to ensure that we can use the same concrete locations in both

derivations.

Lemma 23 (Abstract Types and Location Map Weakening).

If G, Γ, h `∅, I e : τ/h′ (23.1)

and Γ, h, τ, h′ abstract, (23.2)

then G, Γ, h `m, I e : τ/h′.

Proof. Let ω be such that

I \ dom(m) = ωI. (23.3)

We know such a substitution exists because I is countable. By Fact 23.1 and Lemma 18,

G, ωΓ, ωh `∅, ωI e : ωτ/ωh.

138

By Fact 23.2, this is equivalent to

G, Γ, h `∅, ωI e : τ/h. (23.4)

By Fact 23.3, Fact 23.4, and Lemma 22,

G, Γ, h `m, ωI e : τ/h. (23.5)

By Fact 23.3,

ωI ⊆ I. (23.6)

By Fact 23.5, Fact 23.6, and Lemma 19,

G, Γ, h `m, I e : τ/h,

as required.

Lemma 24 (Location Map Weakening Preserves Block Modeling).

If c �m1 b

and m1 ⊆ m2

then c �m2 b.

Proof. Straightforward induction on the derivation of c �m1 b, using Lemma 21.

Lemma 25 (Typable References). If Γ `m bref(r, n, z) : τ, then r ∈ rng(m).

Proof. The proof proceeds by straightforward induction on the derivation of Γ `m bref(r, n, z) : τ.

The only interesting case is T-REF, where the conclusion follows immediately from the premise

that there exists some ` ∈ Clocs(r, m) and Definition 19.

C.6 Index Properties

Proposition 1 (Reflexivity and Transitivity of
∼
⊆). The operator

∼
⊆ is reflexive and transitive.

Proof. Immediate from the definition of
∼
⊆.

Proposition 2 (Singleton Subindexing is Inclusion). n ∈ [[i]] if and only if n
∼
⊆ i.

Proof. Immediate from the definition of
∼
⊆.

Proposition 3 (Soundness of Abstract Arithmetic). If n1
∼
⊆ i1 and n2

∼
⊆ i2, and n1 ◦ n2 is defined,

then n1 ◦ n2
∼
⊆ i1

∼◦ i2.

139

Proof. We prove the case for each operator separately, splitting cases on the forms of i1 and i2.

Case
∼
+

We split cases on the forms of i1 and i2.

Case i1 = n, i2 = m

Immediate.

Case i1 = n, i2 = [l, u]cm
Then i1

∼
+ i2 = [l + n, u + n]c+n mod m

m . Let n1
∼
⊆ i1 and n2

∼
⊆ i2. Then by Proposition 2

and Figure 3.10,

n1 = n

l ≤ n2 (25.1)

n2 ≤ u (25.2)

n2 ≡ c mod m (25.3)

By Fact 25.1,

l + n1 ≤ n1 + n2 (25.4)

By Fact 25.2,

n1 + n2 ≤ u + n1 (25.5)

By Fact 25.3,

n1 + n2 ≡ c + n1 mod m (25.6)

By Fact 25.4, Fact 25.5, Fact 25.6, and the definition of [[i]],

n1 + n2 ∈ [[[l + n1, u + n1]
c+n1 mod m
m]]

By Proposition 2, this is equivalent to

n1 + n2
∼
⊆ [l + n1, u + n1]

c+n1 mod m
m

as required.

Case i1 = [l1, u1]
c1
m1 , i2 = [l2, u2]

c2
m2

Then i1
∼
+ i2 = [l1 + l2, u1 + u2]

0
gcd(m1,m2,c1,c2)

. Let n1
∼
⊆ i1 and n2

∼
⊆ i2. Then by

140

Proposition 2 and Figure 3.10,

l1 ≤ n1 (25.7)

n1 ≤ u1 (25.8)

n1 ≡ c1 mod m1 (25.9)

l2 ≤ n2 (25.10)

n2 ≤ u2 (25.11)

n2 ≡ c2 mod m2 (25.12)

By Fact 25.7 and Fact 25.10,

l1 + l2 ≤ n1 + n2 (25.13)

By Fact 25.8 and Fact 25.11,

n1 + n2 ≤ u1 + u2 (25.14)

By Fact 25.9,

n1 − c1 = xm1 for some x (25.15)

By Fact 25.12,

n2 − c2 = ym2 for some y (25.16)

By Fact 25.15 and Fact 25.16,

n1 + n2 = xm1 + ym2 + c1 + c2 (25.17)

Let

d = gcd(m1, m2, c1, c2)

Then, by Fact 25.17,

n1 + n2 = xdm′1 + ydm′2 + dc′1 + dc′2

= d(xm′1 + ym′2 + c′1 + c′2)

for some m′1, m′2, c′1, and c′2. Equivalently,

n1 + n2 ≡ 0 mod d (25.18)

141

By Fact 25.13, Fact 25.14, Fact 25.18, and the definition of [[i]],

n1 + n2 ∈ [[[l1 + l2, u1 + u2]
0
gcd(m1,m2,c1,c2)

]]

By Proposition 2, this is equivalent to

n1 + n2
∼
⊆ [l1 + l2, u1 + u2]

0
gcd(m1,m2,c1,c2)

as required.

Case
∼·

We split cases on the forms of i1 and i2.

Case i1 = n, i2 = m

Immediate.

Case i1 = n, i2 = [l, u]cm
Then i1

∼· i2 = [nl, nu]nc
nm. Let n1

∼
⊆ i1 and n2

∼
⊆ i2. Then by Proposition 2 and

Figure 3.10,

n1 = n

l ≤ n2 (25.19)

n2 ≤ u (25.20)

n2 ≡ c mod m (25.21)

By Fact 25.19,

n1l ≤ n1n2 (25.22)

By Fact 25.20,

n1n2 ≤ n1u2 (25.23)

By Fact 25.21,

n2 − c = xm for some x

Then

n1(n2 − c) = n1n2 − n1c

= n1xm

= x(n1m)

142

Equivalently,

n1n2 ≡ n1c mod n1m (25.24)

By Fact 25.22, Fact 25.23, Fact 25.24, and the definition of [[i]],

n1n2 ∈ [[[n1l, n1u]n1c
n1m]]

By Proposition 2, this is equivalent to

n1n2
∼
⊆ [n1l, n1u]n1c

n1m

as required.

Case i1 = [l1, u1]
c1
m1 , i2 = [l2, u2]

c2
m2

Immediate.

Case
∼
/

Immediate.

C.7 Logical Assumptions

We assume a many-sorted refinement logic that subsumes quantifier-free first-order logic

with equality and theories of integer and pointer arithmetic. We detail our assumptions with

respect to well-sortedness and the theories of integer and pointer arithmetic below.

Assumption 8 (Well-Sorted Logical Substitution). If φ is well-sorted in sort environment Γ and x

and t have the same sort in Γ, then φ[x 7→ t] is well-sorted in Γ.

Assumption 9 (Free Variables in Well-Sorted Predicates). If φ well-sorted in Γ, then FV(φ) ⊆
dom(Γ).

Assumption 10 (Values’ Logical Sorts). For every value v, if ∅ `m v : τ, then v has sort Sort(τ).

In particular, zero-valued integers 0|w| can take on both int(w) and ref sorts.

Assumption 11 (Weakening Well-Sortedness).

If φ well-sorted in Γ1; Γ2

and dom(Γ1; Γ2) ∩ dom(Γ) = ∅,

then φ well-sorted in Γ1; Γ; Γ2.

Assumption 12 (Strengthening Well-Sortedness). If φ well-sorted in Γ; x : s and x /∈ FV(φ), then

φ well-sorted in Γ.

143

Assumption 13 (Theories of Arithmetic). The refinement logic includes a complete theory of arithmetic

for each integer width. That is, for all w, n1, n2, and operations ◦,

n1|w| ◦ n2|w| = (n1 ◦ n2)|w|

is valid.

We also assume a theory of pointer arithmetic such that the following two are valid:

bref(r, n1, z) +p n2|W| = bref(r, n1 + n2, z)

0|W| +p n2|W| = 0|W|

For all values v1, v2 of the same sort, we assume that:

1. v1 ./ v2 is valid iff v1 ./ v2.

2. v1 ./ v2 is valid iff ¬(v1 ./ v2)

Assumption 14 (Block Boundary Functions). We define the BBegin and BEnd functions as follows:

BBegin(bref(r, n, z)) = bref(r, 0, z)

BEnd(bref(r, n, z)) = bref(r, z, z)

BBegin(0|W|) = 0|W|

BEnd(0|W|) = 0|W|

C.8 Relating Logic and Typing

Lemma 26 (Subtyping Implication). If ∅ ` {ν : t1 | φ1} <: {ν : t2 | φ2}, then ∅ � φ1 ⇒ φ2.

Proof. The proof proceeds by straightforward induction on the derivation of ∅ ` {ν : t1 | φ1} <:

{ν : t2 | φ2}, splitting cases on the final rule used.

Lemma 27 (Refinement Validity). For any value v, if ∅ `m v : {ν : t | φ}, then φ[ν 7→ v] is valid.

Proof. The proof proceeds by straightforward induction on the derivation of ∅ `m v : {ν : t | φ},
splitting cases on the final rule used and using Lemma 26 in the T-PURESUB case.

144

C.9 Environments, Free Variables, and Free Locations

Definition 24 (Well-Formed Environment). The following judgments define what it means for an

environment to be well-formed:

� ∅
WE-EMPTY

� Γ x /∈ dom(Γ) Γ � τ

� Γ; x : τ
WE-VAR

� Γ φ well-sorted in Γ

� Γ; φ
WE-PRED

Definition 25 (Well-Formed Global Environments). A global environment G is well-formed, written

� G, iff, for every binding

f : (xi : τi)/h1 → τ/h2

in G, the following hold:

1. � (xi : τi)/h1 → τ/h2

2. Locs(h1) = Locs(h2)

Definition 26 (Global Environment Modeling). A mapping from function names to their bodies D

models a global envirnonment G, written D � G, if

G(f) = (xi : τi)/h1 → τ/h2

and G, xi : τi, h1 `∅, I f D(f) : τ/h2

for some countable set of concrete location names I f .

Definition 27 (Types’ Free Variables). We define the free variables of types as follows:

FV({ν : t | φ}) , FV(φ) \ ν

FV(ij : τj) ,
⋃

j
FV(τj)

FV(∅) , ∅

FV(h ∗ ` 7→ b) , FV(h) ∪ FV(b)

Definition 28 (Types’ Free Locations). We define the free locations of a type FL({ν : t | φ}) as the

set {@n | @n appears in φ}.

145

Lemma 28 (Free Variables from Environments). For any environment Γ,

1. If Γ � τ, then FV(τ) ⊆ dom(Γ).

2. If Γ � b, then FV(b) ⊆ dom(Γ).

3. If Γ �@ b, then FV(b) ⊆ dom(Γ).

4. If Γ � h, then FV(h) ⊆ dom(Γ).

5. If Γ � τ/h, then FV(τ) ⊆ dom(Γ) and FV(h) ⊆ dom(Γ).

Proof. We consider each case separately.

1. By WF-TYPE, we have:

τ = {ν : t | φ},

φ well-sorted in Γ.

By Assumption 9,

FV(φ) ⊆ dom(Γ).

By Definition 27,

FV({ν : t | φ}) , FV(φ).

so

FV({ν : t | φ}) ⊆ dom(Γ).

2. Immediate by (1), the hypotheses of WF-NDBLOCK, and Definition 27.

3. The proof proceeds by induction on the derivation of Γ �@ b. We split cases on the final

rule used.

Case WF-DBLOCK-SEQUENCE

Immediate by the rule’s premise, (2), and the inductive hypothesis.

Case WF-DBLOCK-SINGLE

By the form of the rule,

b = n : τ, ij : τj

x /∈ Γ, FV(τj) (28.1)

Γ � τ (28.2)

Γ, x : τ �@ ij : τj[@n 7→ x] (28.3)

146

By (1) and Fact 28.2,

FV(τ) ⊆ dom(Γ) (28.4)

By the inductive hypothesis and Fact 28.3,

FV(ij : τj[@n 7→ x]) ⊆ dom(Γ) ∪ {x}

By Fact 28.1, x /∈ FV(τj), and the substitution shown can only add free variable x, so this

implies

FV(ij : τj) ⊆ dom(Γ) (28.5)

By Fact 28.4, Fact 28.5, and Definition 27,

FV(b) ⊆ dom(Γ)

as required.

4. Straightforward induction on the derivation of Γ � h, splitting cases on the final rule used

and invoking (2) and (3) as appropriate.

5. Straightforward from the form of WF-WORLD, (1), and (4).

Lemma 29 (Well-Formed Non-Dependent Blocks Have No Free Locations).

If Γ � i : τ

then FL(τ) = ∅.

Proof. Immediate by the form of WF-NDBLOCK and the fact that a well-formed type cannot

have free locations by Definition 16.

C.9.1 Weakening

Lemma 30 (Well-Formedness Weakening). If Γ1; Γ; Γ2 is a well-formed environment, then:

1. If Γ1; Γ2 � τ, then Γ1; Γ; Γ2 � τ.

2. If Γ1; Γ2 � b, then Γ1; Γ; Γ2 � b.

3. If Γ1; Γ2 �@ b, then Γ1; Γ; Γ2 �@ b.

Proof. We consider each case separately.

147

1. The only rule that applies is WF-TYPE, from which we have

τ = {ν : t | φ}

φ well-sorted in Γ1; Γ2

By the assumption that Γ1; Γ; Γ2 is well-formed, dom(Γ1; Γ2)∩ dom(Γ) = ∅, so by Assump-

tion 11,

φ well-sorted in Γ1; Γ; Γ2

By WF-TYPE,

Γ1; Γ; Γ2 � τ

as required.

2. Follows immediately using (1).

3. The proof proceeds by straightforward induction on the derivation of Γ �@ b, using (1) and

(2).

Lemma 31 (Subtyping Weakening). If Γ ` τ1 <: τ2, then Γ; Γ′ ` τ1 <: τ2.

Proof. The proof proceeds by induction on the derivaton of Γ ` τ1 <: τ2. We split cases on the

final rule used.

Case <:-INT

By the form of the rule, we have

i1
∼
⊆ i2 (31.1)

Γ � φ1 ⇒ φ2 (31.2)

By logical monotonicity,

Γ; Γ′ � φ1 ⇒ φ2 (31.3)

By <:-INT, Fact 31.1, and Fact 31.3,

Γ; Γ′ ` τ1 <: τ2 (31.4)

as required.

148

Case <:-REF

Similar to the case for <:-INT.

Case <:-ABSTRACT, <:-NULL

Immediate.

Case <:-TRANS

Immediate by the inductive hypothesis and a use of <:-TRANS.

Lemma 32 (Pure Type Weakening).

If Γ; Γ′ is a well-formed environment (32.1)

and Γ `m a : τ

then Γ; Γ′ `m a : τ.

Proof. By induction on the derivation of Γ `m a : τ. We split cases on the final rule used.

Case T-VAR

By the form of the rule, we have

a ≡ x

Γ(x) = {ν : t | φ}

τ = {ν : t | ν = x}

Since Γ; Γ′ is well-formed, dom(Γ) ∩ dom(Γ′) = ∅. So

(Γ; Γ′)(x) = τ

By T-VAR, then,

Γ; Γ′ `m x : {ν : t | ν = x}

Case T-INT, T-REF

Immediate.

Case T-ARITH

By the form of the rule,

a ≡ a1 ◦ a2

τ = {ν : int(n, i1
∼◦ i2) | ν = a1 ◦ a2}

Γ `m a1 : int(n, i1) (32.2)

Γ `m a2 : int(n, i2) (32.3)

149

By Fact 32.2, Fact 32.3, and the inductive hypothesis,

Γ; Γ′ `m a1 : int(n, i1) (32.4)

Γ; Γ′ `m a2 : int(n, i2) (32.5)

By Fact 32.4, Fact 32.5, and T-ARITH,

Γ; Γ′ `m a1 ◦ a2 : {ν : int(n, i1
∼◦ i2) | ν = a1 ◦ a2}

Case T-PTRARITH, T-RELATION

Similar to the case for T-ARITH.

Case T-PURESUB

By the form of the rule,

Γ `m a : τ1 (32.6)

Γ ` τ1 <: τ (32.7)

Γ � τ (32.8)

By Fact 32.6 and the inductive hypothesis,

Γ; Γ′ `m a : τ1

By Fact 32.7 and Lemma 31,

Γ; Γ′ ` τ1 <: τ

By Fact 32.8, Fact 32.1, and Lemma 30,

Γ; Γ′ � τ

By the above and T-PURESUB,

Γ; Γ′ `m a : τ

C.10 Subtyping

Lemma 33 (Narrowing To Base Subtyping). If Γ ` {ν : t1 | φ1} <: {ν : t2 | φ2} then Γ `
{ν : t1 | φ1} <: {ν : t2 | φ1}

150

Proof. Straightforward induction on the derivation of Γ ` {ν : t1 | φ1} <: {ν : t2 | φ2}.

Lemma 34 (Subtyping Inversion). If Γ ` τ1 <: τ2 then one of the following holds:

1.

τ1 = {ν : int(w, i1) | φ1}

τ2 = {ν : int(w, i2) | φ2}

i1
∼
⊆ i2

Γ � φ1 ⇒ φ2

2.

τ1 = {ν : ref(`1, i1) | φ1}

τ2 = {ν : ref(`2, i2) | φ2}

`1 v `2

i1
∼
⊆ i2

Γ � φ1 ⇒ φ2

3.

τ1 = {ν : int(W, 0) | φ1}

τ2 = {ν : ref(
∼
` , i2) | φ2}

Γ � φ1 ⇒ ν = 0

Γ � ν = 0⇒ φ2

Proof. The proof proceeds by induction on the derivation of Γ ` τ1 <: τ2. We split cases on the

final rule used.

Case <:-INT

By the form of the rule, case (1) is immediately satisfied.

Case <:-REF

By the form of the rule, case (2) is immediately satisfied.

Case <:-ABSTRACT

By the form of the rule, case (2) is immediately satisfied.

151

Case <:-NULL

By the form of the rule, case (3) is immediately satisfied.

Case <:-TRANS

By the form of the rule,

Γ ` τ1 <: τ3 (34.1)

Γ ` τ3 <: τ2 (34.2)

By the inductive hypothesis and Fact 34.2, there are three cases to consider, corresponding to the

three cases of the lemma.

Case (1)

Then

τ3 = {ν : int(w, i3) | φ3} (34.3)

τ2 = {ν : int(w, i2) | φ2} (34.4)

i3
∼
⊆ i2 (34.5)

Γ � φ3 ⇒ φ2 (34.6)

By Fact 34.3, Fact 34.1, and the inductive hypothesis,

τ1 = {ν : int(w, i1) | φ1} (34.7)

i1
∼
⊆ i3 (34.8)

Γ � φ1 ⇒ φ3 (34.9)

By Fact 34.5, Fact 34.8, and Proposition 1,

i1
∼
⊆ i2 (34.10)

By Fact 34.6, Fact 34.9, and the transitivity of implication,

Γ � φ1 ⇒ φ2 (34.11)

By Fact 34.4, Fact 34.7, Fact 34.10, and Fact 34.11, case (1) is satisfied.

Case (2)

Then

152

τ3 = {ν : ref(`3, i3) | φ3} (34.12)

τ2 = {ν : ref(`2, i2) | φ2} (34.13)

`3 v `2 (34.14)

i3
∼
⊆ i2 (34.15)

Γ � φ3 ⇒ φ2 (34.16)

By Fact 34.12 and the inductive hypothesis, there are two more cases to consider.

First, consider the case where

τ1 = {ν : ref(`1, i1) | φ1} (34.17)

`1 v `3 (34.18)

i1
∼
⊆ i3 (34.19)

Γ � φ1 ⇒ φ3 (34.20)

By Fact 34.14, Fact 34.18, and Definition 21,

`1 v `2 (34.21)

By Fact 34.15, Fact 34.19, and Proposition 1,

i1
∼
⊆ i2 (34.22)

By Fact 34.16, Fact 34.20, and the transitivity of implication,

Γ � φ1 ⇒ φ2 (34.23)

By Fact 34.13, Fact 34.17, Fact 34.21, Fact 34.22, and Fact 34.23, case (2) of the lemma is satisfied.

Next, consider the case where

τ1 = {ν : int(W, 0) | φ1} (34.24)

`3 =
∼
` (34.25)

Γ � φ1 ⇒ ν = 0 (34.26)

Γ � ν = 0⇒ φ3 (34.27)

By Fact 34.25 and Definition 21,

`2 =
∼
` (34.28)

By Fact 34.16, Fact 34.27, and the transitivity of implication,

Γ � ν = 0⇒ φ2 (34.29)

153

By Fact 34.24, Fact 34.26, Fact 34.28, and Fact 34.29, case (3) of the lemma is satisfied.

Case (3)

Then

τ3 = {ν : int(W, 0) | φ3} (34.30)

τ2 = {ν : ref(
∼
` , i2) | φ2} (34.31)

Γ � φ3 ⇒ ν = 0 (34.32)

Γ � ν = 0⇒ φ2 (34.33)

By Fact 34.1, Fact 34.30, and the inductive hypothesis,

τ1 = {ν : int(W, 0) | φ1} (34.34)

Γ � φ1 ⇒ φ3 (34.35)

By Fact 34.32, Fact 34.35, and the transitivity of implication,

Γ � φ1 ⇒ ν = 0 (34.36)

By Fact 34.31, Fact 34.34, Fact 34.33, and Fact 34.36, case (3) of the lemma is satisfied.

Lemma 35 (Subtyping is Transitive). For any environment Γ,

1. If Γ ` τ1 <: τ2 and Γ ` τ2 <: τ3, then Γ ` τ1 <: τ3.

2. If Γ ` b1 <: b2 and Γ ` b2 <: b3, then Γ ` b1 <: b3.

3. If Γ ` h1 <: h2 and Γ ` h2 <: h3, then Γ ` h1 <: h3.

Proof. We consider each case separately.

1. Follows immediately from the assumptions and an application of <:-TRANS.

2. By induction on the derivation of Γ ` b1 <: b2, using (2).

3. By induction on the derivation of Γ ` h1 <: h2, using (3).

Lemma 36 (Subtyping is Reflexive). For any environment Γ,

1. Γ ` τ <: τ

2. Γ ` b <: b

3. Γ ` h <: h

154

Proof. We consider each case separately.

1. Straightforward by cases on the form of τ, using Proposition 1.

2. Straightforward induction on the derivation of Γ ` b <: b, using (1).

3. Straightforward induction on the derivation of Γ ` h <: h, using (2).

Lemma 37 (Related Heaps Share Bound Locations). If Γ ` h1 <: h2, then h1 and h2 have the same

set of bound locations.

Proof. The proof proceeds by straightforward induction on the derivation of Γ ` h1 <: h2.

Lemma 38 (Partial Heap Subtyping).

If Γ ` h1 <: h2

then Γ ` h ∗ h1 <: h ∗ h2

Proof. The proof proceeds by straightforward induction on the derivation of Γ ` h1 <: h2, using

Lemma 36.

C.11 Well-Formedness

Lemma 39 (Pure Values Have Well-Formed Types).

If Γ `m v : τ

then Γ � τ.

Proof. Straightforward induction on the derivation of Γ `m v : τ.

Lemma 40 (Base Subtyping Preserves Well-Formedness). If Γ � {ν : t1 | φ} and Γ ` {ν : t1 | φ} <:

{ν : t2 | φ} then Γ � {ν : t2 | φ}.

Proof. Straightforward induction on the derivation of Γ ` {ν : t1 | φ} <: {ν : t2 | φ}.

Lemma 41 (Refinement Irrelevance in Well-Formedness). For any Γ, t, φ, φ′,

1. If Γ; {ν : t | φ} � τ, then Γ; {ν : t | φ′} � τ.

2. If Γ; {ν : t | φ} � b, then Γ; {ν : t | φ′} � b.

3. If Γ; {ν : t | φ} �@ b, then Γ; {ν : t | φ′} �@ b.

Proof. Straightforward induction on the derivation of the assumed well-formedness fact, using

Definition 14 and Definition 15.

155

Lemma 42 (Fresh Self Type Well-Formedness).

If Γ � {ν : t | φ}

and x /∈ Γ,

then Γ; x : {ν : t | φ} � {ν : t | ν = x}.

Proof. Immediate by cases on the rule used to derive Γ � {ν : t | φ} and Definition 15.

Lemma 43 (Well-Formedness Preserved By Same-Sorted Substitutions). If x, y ∈ dom(Γ), and x

and y have the same sort in SortEnv(Γ), then:

1. If Γ � φ, then Γ � φ[x 7→ y].

2. If Γ � b, then Γ � b[x 7→ y].

3. If Γ �@ b, then Γ �@ b[x 7→ y].

Proof. We consider each case separately.

1. Follows immediately by Assumption 8.

2. Follows immediately by (1).

3. Straightforward induction on the derivation of Γ �@ b, using (1) and (2).

Lemma 44 (Well-Formedness Strenghtening). For any Γ,

1. If Γ; x : τx � τ and x /∈ FV(τ), then Γ � τ.

2. If Γ; x : τx � b and x /∈ FV(b), then Γ � b.

3. If Γ; x : τx �@ b and x /∈ FV(b), then Γ �@ b.

Proof. The proof of (1) is by cases on the rule used to derive Γ; x : τ � τ, using Assumption 12.

The proof of (2) is immediate from (1).

The proof of (3) is a straightforward induction on the derivation of Γ; x : τ �@ b, using

(1) and (2).

Lemma 45 (Eliminating Free Locations From Abstract Blocks).

If Γ �@ n : {ν : t | φ}, ij : τj,

x /∈ Γ, FV(τj),

and θ = [@n 7→ x],

then Γ; x : {ν : t | φ} �@ n : {ν : t | ν = x}, ij : θτj

and @n /∈ FL(θτj).

156

Proof. We split cases on the final rule used to show Γ �@ n : {ν : t | φ}, ij : τj.

Case WF-DBLOCK-SEQUENCE

Impossible.

Case WF-DBLOCK-SINGLE

By the form of the rule,

DisjointOffsets(n : {ν : t | φ}, ij : τj) (45.1)

y /∈ Γ, FV(τj) (45.2)

Γ � {ν : t | φ} (45.3)

Γ, y : {ν : t | φ} �@ ij : τj[@n 7→ y] (45.4)

By Fact 45.3 and Lemma 42,

Γ; x : {ν : t | φ} � {ν : t | ν = x} (45.5)

Assume, without loss of generality, that x 6= y, so that

Γ; x : {ν : t | φ};y : {ν : t | φ} (45.6)

is well-formed. By Fact 45.4, Fact 45.6, and Lemma 30,

Γ; x : {ν : t | φ}; y : {ν : t | φ} �@ ij : τj[@n 7→ y]

By Lemma 41, we have

Γ; x : {ν : t | φ}; y : {ν : t | ν = x} �@ ij : τj[@n 7→ y]

By Lemma 43,

Γ; x : {ν : t | φ}; y : {ν : t | ν = x} �@ ij : τj[@n 7→ y][y 7→ x]

Equivalently,

Γ; x : {ν : t | φ}; y : {ν : t | ν = x} �@ ij : θτj

Note that @n /∈ FL(θτj), as required, and so

Γ; x : {ν : t | φ}; y : {ν : t | ν = x} �@ ij : θτj[@n 7→ y] (45.7)

By Fact 45.1, Fact 45.2, x 6= y, Fact 45.5, Fact 45.7, and WF-DBLOCK-SINGLE,

Γ; x : {ν : t | φ} �@ n : {ν : t | ν = x}, ij : θτj

as required.

157

Lemma 46 (Dependent Blocks Without Free Locations). If Γ �@ b and FL(b) = ∅, then Γ � b.

Proof. The proof proceeds by induction on the derivation of Γ �@ b. We split cases on the final

rule used.

Case WF-DBLOCK-SEQUENCE

The desired conclusion follows immediately.

Case WF-DBLOCK-SINGLE

By the form of the rule,

b = n : τ, ij : τj

DisjointOffsets(n : τ, ij : τj) (46.1)

x /∈ Γ, FV(τj) (46.2)

Γ � τ (46.3)

Γ, x : τ �@ ij : τj[@n 7→ x] (46.4)

Since FL(b) = ∅, Fact 46.4 gives

Γ, x : τ �@ ij : τj

By Fact 46.2 and Lemma 44,

Γ �@ ij : τj (46.5)

By the inductive hypothesis,

Γ � ij : τj

The only rule by which this can be derived is WF-NDBLOCK, by which we have

∀j.Γ � τj (46.6)

By Fact 46.1, Fact 46.3, Fact 46.6, and WF-NDBLOCK,

Γ � n : τ, ij : τj

as required.

Lemma 47 (One Binding per Location in Well-Formed Heaps). If Γ � h, then any location is bound

at most once in h.

Proof. The proof proceeds by straightforward induction on the derivation of Γ � h.

158

Lemma 48 (Partial Heap Subtyping Preserves Well-Formedness).

If Γ � h1 ∗ h2,

Γ � h3,

and Γ ` h2 <: h3,

then Γ � h1 ∗ h3

Proof. The proof proceeds by straightforward induction on the derivation of Γ � h3.

Lemma 49 (Unfolded Block Well-Formedness).

If Γ �@ nk : {ν : tk | φk}, i+m : τm,

θ = [@nk 7→ xk],

xk disjoint,

and xk /∈ Γ, FV(nk : {ν : tk | φk}, i+m : τm),

then Γ; xk : {ν : tk | θφk} � nk : {ν : tk | ν = xk}, i+m : θτm.

Proof. By repeated application of Lemma 45, ending with an application of Lemma 46.

C.12 Values

Lemma 50 (Value Self-Typing).

If Γ `m v : {ν : t | φ}

then Γ `m v : {ν : t | ν = v}.

Proof. By induction on the derivation of Γ `m v : {ν : t | φ}. We split cases on the final rule

used.

Case T-VAR, T-INT, T-REF

Immediate.

Case T-ARITH, T-PTRARITH, T-RELATION

Impossible, since these rules do not apply to values.

Case T-PURESUB

By the form of the rule,

Γ `m v : {ν : t1 | φ1} (50.1)

Γ ` {ν : t1 | φ1} <: {ν : t | φ} (50.2)

159

By the inductive hypothesis and Fact 50.1,

Γ `m v : {ν : t1 | ν = v} (50.3)

By Fact 50.3 and Lemma 39,

Γ � {ν : t1 | ν = v} (50.4)

By Fact 50.2 and Lemma 33,

Γ ` {ν : t1 | ν = v} <: {ν : t | ν = v} (50.5)

By Fact 50.4, Fact 50.5, and Lemma 40,

Γ � {ν : t | ν = v} (50.6)

By Fact 50.3, Fact 50.5, Fact 50.6, and T-PURESUB,

Γ `m v : {ν : t | ν = v}

as required.

C.13 Substitutions

Definition 29 (Substitution Combination). Let θ1 = [xj 7→ vj]. Define the combination θ2[θ1] as

θ2[θ1] = [xj 7→ θ2vj].

Lemma 51 (Substitution Composition, Combination, and Free Variables). Let θ1, θ2 be substitu-

tions.

1. If FV(φ) ⊆ dom(θ1), then θ2(θ1φ) = θ2[θ1]φ.

2. If FV(τ) ⊆ dom(θ1), then θ2(θ1τ) = θ2[θ1]τ.

3. If FV(b) ⊆ dom(θ1), then θ2(θ1b) = θ2[θ1]b.

4. If FV(h) ⊆ dom(θ1), then θ2(θ1h) = θ2[θ1]h.

Proof. We prove only the first case, for refinement predicates, from which the other cases follow

easily.

Let x be a variable in FV(φ). Since FV(φ) ⊆ dom(θ1), θ1(x) = v for some v. So

θ2(θ1(x)) = θ2(v). But this is the same as θ2[θ1](x).

160

Definition 30 (Well-Formed Substitutions). A substitution θ from variables to values is well-formed

in environment Γ with respect to location map m, written Γ �m θ, according to the following rules:

∅ �m ∅
WFSUBST-EMPTY

∅ `m v : τ Γ[x 7→ v] �m θ

x : τ; Γ �m [x 7→ v]θ
WFSUBST-VAR

∅ � true⇒ φ Γ �m θ

φ; Γ �m θ
WFSUBST-PRED

Lemma 52 (Substitution Domains). If Γ �m θ, then dom(θ) = dom(Γ).

Proof. The proof proceeds by straightforward induction on the derivation of Γ �m θ.

Lemma 53 (Value Substitution: Well-Formedness). If Γ �m θ, then

1. If φ well-sorted in Γ; Γ′, then θφ well-sorted in θΓ′.

2. If Γ; Γ′ � τ, then θΓ′ � θτ.

3. If Γ; Γ′ � b, then θΓ′ � θb.

4. If Γ; Γ′ �@ b, then θΓ′ �@ θb.

5. If Γ; Γ′ � h, then θΓ′ � θh.

6. If Γ; Γ′ � τ/h, then θΓ′ � θτ/θh.

Proof. We consider each case separately.

1. We proceed by induction on the derivation of Γ �m θ, splitting cases on the final rule used.

Case WFSUBST-EMPTY

Then θ = · and Γ = ∅, so by assumption we have φ well-sorted in ∅; Γ′. Since θ is empty,

this is equivalent to θφ well-sorted in θΓ′.

Case WFSUBST-PRED

By the form of WFSUBST-PRED, we have

Γ = a; Γ′′,

Γ′′ �m θ. (53.1)

Note that, by Definition 15, SortEnv(a; Γ′′) = SortEnv(Γ′′), so

φ well-sorted in Γ; Γ′ ⇒ φ well-sorted in Γ′′; Γ′.

161

By the inductive hypothesis and Fact 53.1, then, we have

θφ well-sorted in θΓ′.

Case WFSUBST-VAR

By the form of WFSUBST-VAR, we have

Γ = x : τ; Γ′′,

θ = [x 7→ v]θ′

∅ `m v : τ (53.2)

Γ′′[x 7→ v] �m θ′. (53.3)

By assumption, we have

φ well-sorted in x : τ; Γ′′; Γ′. (53.4)

By Assumption 10 and Fact 53.2, v has sort Sort(τ). By Assumption 8 and Fact 53.4, and

using the fact that SortEnv(Γ) = SortEnv(θΓ) for all Γ, θ,

φ[x 7→ v] well-sorted in x : τ; Γ′′[x 7→ v]; Γ′[x 7→ v].

Since x /∈ FV(φ[x 7→ v]), by Assumption 12 and the above,

φ[x 7→ v] well-sorted in Γ′′[x 7→ v]; Γ′[x 7→ v].

By the above, the inductive hypothesis, and Fact 53.3,

θ′(φ[x 7→ v]) well-sorted in θ′(Γ′[x 7→ v]).

That is,

θφ well-sorted in θΓ′.

as required.

2. The proof is straightforward by cases on the rule used to derive Γ; Γ′ � φ and (1).

3. The proof follows immediately from the premises of WF-NDBLOCK, which is the only rule

that may be used to show Γ; Γ′ � b, and (2).

4. The proof proceeds by straightforward induction on the derivation of Γ; Γ′ �@ b, splitting

cases on the final rule used and using (2).

162

5. The proof proceeds by straightforward induction on the derivation of Γ; Γ′ � h, splitting

cases on the final rule used and using (3) and (4).

6. Follows immediately from (2) and (5).

Lemma 54 (Value Substitution: Implication). If Γ1 �m θ and Γ1; Γ2 � φ1 ⇒ φ2, then θΓ2 � θφ1 ⇒
θφ2.

Proof. The proof proceeds by induction on the derivation of Γ1 �m θ. We split cases on the final

rule used.

Case WFSUBST-EMPTY

Immediate.

Case WFSUBST-VAR

By the form of WFSUBST-VAR, we have

Γ1 = x : {ν : t | φx}; Γ′

θ = [x 7→ v]θ′

∅ `m v : {ν : t | φx} (54.1)

Γ′[x 7→ v] �m θ′ (54.2)

By assumption and Definition 13, we have

φx[ν 7→ x] ∧ [[Γ′]] ∧ [[Γ2]] ∧ φ1 ⇒ φ2.

This is equivalent to

φx[ν 7→ x]⇒ ([[Γ′]] ∧ [[Γ2]] ∧ φ1 ⇒ φ2).

The above is universally closed, so we may replace x by v to obtain

φx[ν 7→ v]⇒ ([[Γ′]] ∧ [[Γ2]] ∧ φ1 ⇒ φ2)[x 7→ v].

By Lemma 27 and Fact 54.1,

true⇒ φx[ν 7→ v].

So

([[Γ′]] ∧ [[Γ2]] ∧ φ1 ⇒ φ2)[x 7→ v].

By pushing substitutions inward, this is

[[Γ′[x 7→ v]]] ∧ [[Γ2[x 7→ v]]] ∧ φ1[x 7→ v]⇒ φ2[x 7→ v].

163

Which, by Definition 13, is equivalent to

Γ′[x 7→ v]; Γ2[x 7→ v] � φ1[x 7→ v]⇒ φ2[x 7→ v].

By the inductive hypothesis and Fact 54.2,

θ′Γ2[x 7→ v] � θ′φ1[x 7→ v]⇒ θ′φ2[x 7→ v].

Equivalently,

θΓ2 � θφ1 ⇒ θφ2.

Case WFSUBST-PRED

By the form of WFSUBST-PRED, we have

Γ1 = φ; Γ′

∅ � true⇒ φ (54.3)

Γ′ �m θ (54.4)

By assumption and Definition 13,

φ ∧ [[Γ′]] ∧ [[Γ2]] ∧ φ1 ⇒ φ2.

This is equivalent to

φ⇒ ([[Γ′]] ∧ [[Γ2]] ∧ φ1 ⇒ φ2).

Which, by Fact 54.3, becomes

[[Γ′]] ∧ [[Γ2]] ∧ φ1 ⇒ φ2.

Which, by Definition 13, is equivalent to

Γ′; Γ2 � φ1 ⇒ φ2.

By the inductive hypothesis and Fact 54.4

θΓ2 � θφ1 ⇒ θφ2.

Lemma 55 (Value Substitution: Subtyping). If Γ �m θ, then

1. If Γ; Γ′ ` τ1 <: τ2, then θΓ′ ` θτ1 <: θτ2.

2. If Γ; Γ′ ` b1 <: b2, then θΓ′ ` θb1 <: θb2.

3. If Γ; Γ′ ` h1 <: h2, then θΓ′ ` θh1 <: θh2.

164

4. If Γ; Γ′ ` τ1/h1 <: τ2/h2, then θΓ′ ` θτ1/θh1 <: θτ2/θh2.

Proof. We consider each case separately.

1. The proof proceeds by induction on the derivation of Γ; Γ′ ` τ1 <: τ2. We split cases on the

final rule used.

Case <:-INT

By the form of the rule, we have

τ1 = {ν : int(n, i1) | φ1}

τ2 = {ν : int(n, i2) | φ2}

i1
∼
⊆ i2 (55.1)

Γ; Γ′ � φ1 ⇒ φ2 (55.2)

By Fact 55.2 and Lemma 54,

θΓ′ � θφ1 ⇒ θφ2 (55.3)

By Fact 55.1, Fact 55.3, and <:-INT,

θΓ′ ` θτ1 <: θτ2

Case <:-REF

Similar to <:-INT.

Case <:-ABSTRACT, <:-NULL

Immediate.

Case <:-TRANS

Follows immediately from the inductive hypothesis and another application of <:-TRANS.

2. The proof proceeds by induction on the derivation of Γ; Γ′ ` b1 <: b2. We split cases on the

final rule used.

Case <:-SEQUENCE

By the form of the rule, we have

165

b1 = i+ : τ1, b′1

b2 = i+ : τ2, b′2

Γ; Γ′ ` τ1 <: τ2 (55.4)

Γ; Γ′ ` b′1 <: b′2 (55.5)

By Fact 55.4 and (1),

θΓ′ ` θτ1 <: θτ2 (55.6)

By Fact 55.5 and the inductive hypothesis,

θΓ′ ` θb′1 <: θb′2 (55.7)

By Fact 55.6, Fact 55.7, and <:-SEQUENCE,

θΓ′ ` i+ : θτ1, θb′1 <: i+ : θτ2, θb′2

as required.

Case <:-SINGLE

By the form of the rule,

b1 = i+ : τ1, b′1

b2 = i+ : τ2, b′2

Γ; Γ′ ` τ1 <: τ2 (55.8)

x /∈ Γ; Γ′ (55.9)

Γ; Γ′; x : τ1 ` b1[@n 7→ x] <: b2[@n 7→ x] (55.10)

By Fact 55.8 and (1),

θΓ′ ` θτ1 <: θτ2 (55.11)

By Fact 55.10 and the inductive hypothesis,

θΓ′; x : θτ1 ` θ(b1[@n 7→ x]) <: θ(b2[@n 7→ x])

Since x /∈ Γ, x /∈ dom(θ) by Lemma 52, so

θΓ′; x : θτ1 ` θb1[@n 7→ x] <: θb2[@n 7→ x] (55.12)

By Fact 55.11, Fact 55.12, Fact 55.9, and <:-SINGLE,

θΓ′ ` i+ : θτ1, θb′1 <: i+ : θτ2, θb′2

as required.

166

3. The proof proceeds by induction on the derivation of Γ; Γ′ ` h1 <: h2. We split cases on the

final rule used.

Case <:-EMPTY-HEAP

Immediate.

Case <:-HEAP

By the form of the rule,

h1 = h′1 ∗ ` 7→ b1

h2 = h′2 ∗ ` 7→ b2

Γ; Γ′ ` b1 <: b2 (55.13)

Γ; Γ′ ` h′1 <: h′2 (55.14)

By Fact 55.13 and (2),

θΓ′ ` θb1 <: θb2 (55.15)

By Fact 55.14 and the inductive hypothesis,

θΓ′ ` θh′1 <: θh′2 (55.16)

By Fact 55.15, Fact 55.16, and <:-HEAP,

θΓ′ ` θh1 <: θh2

4. The only rule that applies is <:-WORLD. By the form of the rule:

Γ; Γ′ ` τ1 <: τ2 (55.17)

Γ; Γ′ ` h1 <: h2 (55.18)

By Fact 55.17 and (1),

θΓ′ ` θτ1 <: θτ2 (55.19)

By Fact 55.18 and (3),

θΓ′ ` θh1 <: θh2 (55.20)

By Fact 55.19, Fact 55.20, and <:-WORLD,

θΓ′ ` θτ1/θh1 <: θτ2/θh2

167

Lemma 56 (Variable Substitution).

If Γ �m θ

and Γ(x) = {ν : t | φ},

then ∅ `m θx : {ν : t | ν = θx}.

Proof. The proof proceeds by induction on the derivation of Γ �m θ. We split cases on the final

rule used.

Case WFSUBST-EMPTY

Impossible.

Case WFSUBST-VAR

By the form of the rule, we have

Γ = y : τ; Γ′

θ = [y 7→ v]θ′

∅ `m v : τ (56.1)

Γ′[y 7→ v] �m θ′ (56.2)

We split cases on whether x = y.

Case x = y

Then θx = θy = v. By Fact 56.1 and Lemma 50,

∅ `m θx : {ν : t | ν = θx}

as required.

Case x 6= y

Then x ∈ dom(Γ′), so that

Γ′(x) = {ν : t | φ}

from which we have

(Γ′[y 7→ v])(x) = {ν : t | φ[y 7→ v]}

By the above, Fact 56.2, and the inductive hypothesis,

∅ `m θx : {ν : t | ν = θx}

168

as required.

Case WFSUBST-PRED

By the form of the rule,

Γ = φ; Γ′

Γ′ �m θ (56.3)

Then x ∈ dom(Γ′), so that

Γ′(x) = {ν : t | φ} (56.4)

(56.5)

By Fact 56.3, Fact 56.5, and the inductive hypothesis,

∅ `m θx : {ν : t | ν = θx}

as required.

Lemma 57 (Pure Typing Value Substitution). If Γ �m θ and Γ; Γ′ `m a : τ, then θΓ′ `m θa : θτ.

Proof. The proof proceeds by induction on the derivation of Γ; Γ′ `m a : τ. We split cases on the

final rule used.

Case T-VAR

Then

a ≡ x

τ = {ν : t | ν = x}

By the form of the rule,

(Γ; Γ′)(x) = {ν : t | φ}. (57.1)

We split cases on whether x ∈ dom(Γ).

Case x ∈ dom(Γ)

By Lemma 56,

∅ `m θx : {ν : t | ν = θx}

By Lemma 32,

θΓ′ `m θx : {ν : t | ν = θx}

169

as required.

Case x /∈ dom(Γ)

Then x ∈ dom(Γ′). By Fact 57.1,

Γ′(x) = {ν : t | φ}

from which we have

(θΓ′)(x) = {ν : t | θφ}

By T-VAR,

θΓ′ `m x : {ν : t | ν = x}

Since x /∈ dom(Γ), x /∈ dom(θ) by Lemma 52, so this is equivalent to

θΓ′ `m θx : {ν : t | ν = θx}

as required.

Case T-INT, T-REF

Immediate.

Case T-ARITH

By the form of the rule,

a ≡ v1 ◦ v2

τ = {ν : int(n, i1
∼◦ i2) | ν = v1 ◦ v2}

Γ; Γ′ `m v1 : int(n, i1) (57.2)

Γ; Γ′ `m v2 : int(n, i2) (57.3)

By the inductive hypothesis and Fact 57.2,

θΓ′ `m θv1 : int(n, i1) (57.4)

By the inductive hypothesis and Fact 57.3,

θΓ′ `m θv2 : int(n, i2) (57.5)

By Fact 57.4, Fact 57.5, and T-ARITH,

θΓ′ `m θv1 ◦ θv2 : {ν : int(n, i1
∼◦ i2) | ν = θv1 ◦ θv2}

170

as required.

Case T-PTRARITH, T-RELATION

Similar to T-ARITH.

Case T-PURESUB

By the form of the rule, we have

Γ; Γ′ `m a : τ1 (57.6)

Γ; Γ′ ` τ1 <: τ (57.7)

Γ; Γ′ � τ (57.8)

By the inductive hypothesis and Fact 57.6,

θΓ′ `m θa : θτ1 (57.9)

By Lemma 55 and Fact 57.7,

θΓ′ ` θτ1 <: θτ (57.10)

By Lemma 53 and Fact 57.8,

θΓ′ � θτ (57.11)

By Fact 57.9, Fact 57.10, Fact 57.11, and T-PURESUB,

θΓ′ `m θa : θτ

as required.

Lemma 58 (Value Substitution).

Γ �m θ,

G, Γ; Γ′, h `m, I e : τ/h′,

and � G,

then G, θΓ′, θh `m, I θe : θτ/θh′.

Proof. By induction on the derivation of G, Γ; Γ′, h `m, I e : τ/h′. We split cases on the final rule

used.

Case T-PURE

By the form of the rule,

171

h = h′

Γ; Γ′ `m e : τ

By Lemma 57,

θΓ′ `m θe : θτ

By T-PURE,

G, θΓ′, θh `m, I θe : θτ/θh

as required.

Case T-SUB

By the form of the rule,

G, Γ; Γ′, h `m, I e : τ1/h1 (58.1)

Γ; Γ′ ` τ1/h1 <: τ/h′ (58.2)

Γ; Γ′ � τ/h′ (58.3)

By the inductive hypothesis and Fact 58.1,

G, θΓ′, θh `m, I θe : θτ1/θh1 (58.4)

By Lemma 55 and Fact 58.2,

θΓ′ ` θτ1/θh1 <: θτ/θh′ (58.5)

By Lemma 53 and Fact 58.3,

θΓ′ � θτ/θh′ (58.6)

By Fact 58.4, Fact 58.5, Fact 58.6, and T-SUB,

G, θΓ′, θh `m, I θe : θτ/θh′

as required.

Case T-IF

By the form of the rule,

172

e ≡ if v then e1 else e2

Γ; Γ′ `m v : int(W, i) (58.7)

G, Γ; Γ′; v 6= 0, h `m, I e1 : τ/h′ (58.8)

G, Γ; Γ′; v = 0, h `m, I e2 : τ/h′ (58.9)

By Lemma 57 and Fact 58.7,

θΓ′ `m θv : int(W, i) (58.10)

By the inductive hypothesis and Fact 58.8,

G, θΓ′; θv 6= 0, θh `m, I θe1 : θτ/θh′ (58.11)

By the inductive hypothesis and Fact 58.9,

G, θΓ′; θv = 0, θh `m, I θe2 : θτ/θh′ (58.12)

By Fact 58.10, Fact 58.11, Fact 58.12, and T-IF,

G, θΓ′, θh `m, I if θv then θe1 else θe2 : θτ/θh′

as required.

Case T-LET

By the form of the rule,

e ≡ let x = e1 in e2

I = I1 ∪ I2

I1 ∩ I2 = ∅

G, Γ; Γ′, h `m, I1 e1 : τ1/h1 (58.13)

G, Γ; Γ′; x : τ1, h1 `m, I2 e2 : τ/h′ (58.14)

Γ; Γ′ � τ/h′ (58.15)

By the inductive hypothesis and Fact 58.13,

G, θΓ′, θh `m, I1 θe1 : θτ1/θh1 (58.16)

By the inductive hypothesis and Fact 58.14,

G, θΓ′; x : θτ1, θh1 `m, I2 θe2 : θτ/θh′ (58.17)

173

By Lemma 53 and Fact 58.15,

θΓ′ � θτ/θh′ (58.18)

By Fact 58.16, Fact 58.17, Fact 58.18, and T-LET,

G, θΓ′, θh `m, I let x = θe1 in θe2 : θτ/θh′

as required.

Case T-READ

By the form of the rule,

e ≡ ∗nv

h′ = h

Γ; Γ′ `m v : {ν : ref(`j, i) | Safe(ν, n)} (58.19)

h = h1 ∗ `j 7→ . . . , i : τ, . . . (58.20)

SizeOf(τ) = n (58.21)

By Lemma 57 and Fact 58.19,

θΓ′ `m θv : {ν : ref(`j, i) | Safe(θν, n)} (58.22)

By Fact 58.20,

θh = θh1 ∗ `j 7→ . . . , i : θτ, . . . (58.23)

By Fact 58.21 and Definition 7,

SizeOf(θτ) = n (58.24)

By Fact 58.22, Fact 58.23, Fact 58.24, and T-READ,

G, θΓ′, θh `m, I ∗nθv : θτ/θh

as required.

Case T-SUPD

By the form of the rule,

174

e ≡ ∗v1 := v2

h = h1 ∗ `j 7→ . . . , n : τ1, . . . (58.25)

Γ; Γ′ `m v1 : {ν : ref(`j, n) | Safe(ν, SizeOf(τ2))} (58.26)

Γ; Γ′ `m v2 : τ2 (58.27)

SizeOf(τ2) = SizeOf(τ1) (58.28)

h′ = h1 ∗ `j 7→ . . . , n : τ2, . . . (58.29)

τ = void

By Fact 58.25,

θh = θh1 ∗ `j 7→ . . . , n : θτ1, . . . (58.30)

By Lemma 57 and Fact 58.26,

θΓ′ `m θv1 : {ν : ref(`j, n) | Safe(θν, SizeOf(τ2))}

By Definition 7,

SizeOf(τ2) = SizeOf(θτ2)

so

θΓ′ `m θv1 : {ν : ref(`j, n) | Safe(θν, SizeOf(θτ2))} (58.31)

By Lemma 57 and Fact 58.27,

θΓ′ `m θv2 : θτ2 (58.32)

By Fact 58.29,

θh′ = θh1 ∗ `j 7→ . . . , n : θτ2, . . . (58.33)

By Fact 58.28 and Definition 7,

SizeOf(θτ2) = SizeOf(θτ1) (58.34)

By Fact 58.30, Fact 58.31, Fact 58.32, Fact 58.33, Fact 58.34, and T-SUPD,

G, θΓ′, θh `m, I ∗θv1 := θv2 : void/θh′

as required.

175

Case T-WUPD

By the form of the rule,

e ≡ ∗v1 := v2

h′ = h

Γ; Γ′ `m v1 : {ν : ref(`j, n+m) | Safe(ν, SizeOf(τ))} (58.35)

Γ; Γ′ `m v2 : τ (58.36)

h = h1 ∗ `j 7→ . . . , n+m : τ, . . . (58.37)

By Lemma 57 and Fact 58.35,

θΓ′ `m θv1 : {ν : ref(`j, n+m) | Safe(θν, SizeOf(τ))}

By Definition 7,

SizeOf(τ) = SizeOf(θτ)

so

θΓ′ `m θv1 : {ν : ref(`j, n+m) | Safe(θν, SizeOf(θτ))} (58.38)

By Lemma 57 and Fact 58.36,

θΓ′ `m θv2 : θτ (58.39)

By Fact 58.37,

θh = θh1 ∗ `j 7→ . . . , n+m : θτ, . . . (58.40)

By Fact 58.38, Fact 58.39, Fact 58.40, and T-WUPD,

G, θΓ′, θh `m, I ∗θv1 := θv2 : void/θh

as required.

Case T-UNFOLD

By the form of the rule,

176

e ≡ letu x = unfold v in e′

Γ1; Γ2 `m v : {ν : ref(
∼
` , iy) | ν 6= 0} (58.41)

h = h0 ∗
∼
` 7→ nk : τk, i+ : τ+ (58.42)

xk disjoint (58.43)

xk /∈ Γ1; Γ2, e′, FV(h) (58.44)

θ′ = [@nk 7→ xk] (58.45)

Γ′ = Γ1; Γ2; xk : θ′τk (58.46)

`j /∈ Γ1; Γ2, h, m (58.47)

h1 = h ∗ `j 7→ nk : {ν = xk}, i+ : θ′τ+ (58.48)

G, Γ′; x : {ν : ref(`j, iy) | ν = v}, h1 `m, I e′ : τ′/h′ (58.49)

Γ′ � h1 (58.50)

Γ1; Γ2 � τ′/h′ (58.51)

By Fact 58.41 and Lemma 57,

θΓ2 `m θv : {ν : ref(
∼
` , iy) | ν 6= 0} (58.52)

By Fact 58.42,

θh = θh0 ∗
∼
` 7→ nk : θτk, i+ : θτ+ (58.53)

By Fact 58.44, and noting that applying value substitution θ can only remove free variables,

xk /∈ θΓ2, θe′, FV(θh) (58.54)

Let

Γ′′ = θΓ2; xk : θθ′τk (58.55)

By Fact 58.47,

`j /∈ θΓ2, θh, m (58.56)

By Fact 58.48,

θh1 = θh ∗ `j 7→ nk : {ν = θxk}, i+ : θθ′τ+

By Fact 58.44 and Lemma 52, this is equivalent to

θh1 = θh ∗ `j 7→ nk : {ν = xk}, i+ : θθ′τ+ (58.57)

177

By Fact 58.49, Fact 58.46, Fact 58.55, and the inductive hypothesis,

G, Γ′′; x : {ν : ref(`j, iy) | ν = θv}, θh1 `m, I θe′ : θτ′/θh′ (58.58)

By Fact 58.50, Fact 58.46, Fact 58.55, and Lemma 53,

Γ′′ � θh1 (58.59)

By Fact 58.51 and Lemma 53,

θΓ2 � θτ′/θh′ (58.60)

By Fact 58.52, Fact 58.53, Fact 58.54, Fact 58.55, Fact 58.56, Fact 58.57, Fact 58.58, Fact 58.59,

Fact 58.60, and T-UNFOLD,

G, θΓ2, θh1 `m, I letu x = unfold θv in θe′ : θτ′/θh′

as required.

Case T-CALL

By the form of the rule,

e ≡ f (vj)

G(f) = (xj : τj)/h f → τ′/h′f (58.61)

h = hm ∗ hu

Γ; Γ′ � hm (58.62)

Γ; Γ′ � hu (58.63)

θ′ = [xj 7→ vj][` f 7→ `] (58.64)

Γ; Γ′ � hu ∗ θ′h′f (58.65)

Γ; Γ′ `m vj : θ′τj (58.66)

Γ; Γ′ ` hm <: θ′h f (58.67)

h′ = hu ∗ θ′h′f

τ = θ′τ′

By Lemma 53 and Fact 58.62,

θΓ′ � θhm (58.68)

By Lemma 53 and Fact 58.63,

θΓ′ � θhu (58.69)

178

Using Fact 58.64, define

θ2 = [xj 7→ θvj][` f 7→ `]

= θ[θ′] (58.70)

By the assumption that � G and Definition 25,

� (xj : τj)/h f → τ′/h′f (58.71)

By the form of WF-FUNSCHEME and Fact 58.71,

Γ f = xj : τj (58.72)

Γ f � τj

Γ f � h f

Γ f � τ′/h′f

By the preceding, Fact 58.72, and Lemma 28,

FV(τj) ⊆ {xj} (58.73)

FV(h f) ⊆ {xj} (58.74)

FV(τ′) ⊆ {xj} (58.75)

FV(h′f) ⊆ {xj} (58.76)

By Lemma 53 and Fact 58.65,

θΓ′ � θhu ∗ θ(θ′h′f) (58.77)

By Fact 58.74, Fact 58.77, and Lemma 51,

θΓ′ � θhu ∗ θ2h′f (58.78)

By Lemma 57 and Fact 58.66,

θΓ′ `m θvj : θ(θ′τj) (58.79)

By Fact 58.73, Fact 58.79, and Lemma 51,

θΓ′ `m θvj : θ2τj (58.80)

By Lemma 55 and Fact 58.67,

θΓ′ ` θhm <: θ(θ′h f) (58.81)

179

By Fact 58.74, Fact 58.81, and Lemma 51,

θΓ′ ` θhm <: θ2h f (58.82)

By Fact 58.68, Fact 58.69, Fact 58.61, Fact 58.70, Fact 58.78, Fact 58.80, Fact 58.82, and T-CALL,

G, θΓ′, θh `m, I f (θvj) : θ2τ′/θhu ∗ θ2h′f

By Fact 58.70, Fact 58.75, Fact 58.76, and Lemma 51, this is equivalent to

G, θΓ′, θh `m, I f (θvj) : θ(θ′τ′)/θhu ∗ θ(θ′h′f)

as required.

Case T-MALLOC

By the form of the rule

e ≡ malloc(v)

`j /∈ Γ; Γ′, h, m (58.83)

h = h0 ∗
∼
` 7→ b (58.84)

h′ = h ∗ `j 7→ b0 (58.85)

Γ; Γ′ � h ∗ `j 7→ b (58.86)

Γ; Γ′ `m v : {ν : int(W, i) | ν ≥ 0} (58.87)

τ = {ν : ref(`j, 0) | Allocated(ν, v)} (58.88)

By Fact 58.83,

`j /∈ θΓ′, θh, m (58.89)

By Fact 58.84,

θh = θh0 ∗
∼
` 7→ θb (58.90)

By Fact 58.85,

θh′ = θh ∗ `j 7→ (θb)0

As b0 contains no free variables, we have

θh′ = θh ∗ `j 7→ θb0 (58.91)

180

By Fact 58.86 and Lemma 53,

θΓ′ � θh ∗ `j 7→ θb (58.92)

By Fact 58.87 and Lemma 57,

θΓ′ `m θv : {ν : int(W, i) | θν ≥ 0} (58.93)

By Fact 58.88,

θτ = {ν : ref(`j, 0) | Allocated(ν, θv)} (58.94)

By Fact 58.89, Fact 58.90, Fact 58.91, Fact 58.92, Fact 58.93, Fact 58.94, and T-MALLOC,

G, θΓ′, θh `m, I malloc(v) : θτ/θh′

as required.

C.14 Location Name Sets

Definition 31 (Location Name Sets). The set of location names bound in a heap h, Locs(h), is defined

as

{` |
∼
`∈ dom(h)} ∪ {` | `j ∈ dom(h)}.

Lemma 59 (Same Location Names in Related Heaps). If Γ ` h1 <: h2, then Locs(h1) = Locs(h2).

Proof. Straightforward induction on the derivation of Γ ` h1 <: h2, using Definition 31.

Lemma 60 (Same Location Names In Input and Output Heaps).

If G, Γ, h `m, I e : τ/h′

and � G (60.1)

then Locs(h) = Locs(h′).

Proof. The proof proceeds by induction on the derivation of G, Γ, h `m, I e : τ/h′, splitting cases

on the final rule used. The only interesting case is T-CALL.

Case T-CALL

By the form of the rule,

181

h = hu ∗ hm

Γ ` hm <: θh f (60.2)

G(f) = (xj : τj)/h f → τ′/h′f (60.3)

h′ = hu ∗ θh′f (60.4)

By Fact 60.2 and Lemma 59,

Locs(hm) = Locs(θh f) (60.5)

By Fact 60.3, Fact 60.1, and Definition 25,

Locs(h f) = Locs(h′f) (60.6)

By Fact 60.5 and Fact 60.6,

Locs(θh′f) = Locs(hm)

from which it follows by Definition 31 that

Locs(hu ∗ hm) = Locs(hu ∗ θh′f)

as required.

C.15 Location Name Substitution

Definition 32. A location name substitution is a function ρ : LocName → LocName, where

LocName is the set of location names (i.e., names ` from which we form abstract location names
∼
` and

concrete location names `j).

182

We define the application of location name substitutions as follows:

ρ
∼
` =

∼
ρ`

ρ`j = (ρ`)j

ρ(int(w, i)) = int(w, i)

ρ(ref(`, i) = ref(ρ(`), i)

ρ({ν : t | φ}) = {ν : ρt | φ}

ρ(i : τ) = i : ρτ

ρ(h ∗ ` 7→ b) = ρ(h) ∗ ρ` 7→ ρb

ρ(m[` 7→ r]) = ρm[ρ` 7→ r]

ρ(Γ; x : τ) = ρΓ; x : ρτ

ρ(Γ; φ) = ρΓ; φ

Lemma 61 (Location Name Substitution and Well-Formed Subtypes).

If Γ � h1 (61.1)

and Γ ` h1 <: ρh2 (61.2)

then |Locs(ρh2)| = |Locs(h2)|

Proof. By Fact 61.1 and Lemma 47, each location is bound at most once in h1. By Fact 61.2 and

Lemma 37, h1 and ρh2 bind the same locations. Thus, every location is bound at most once in

ρh2. Note that the cardinalities of Locs(h2) and Locs(ρh2) can only differ if ρ has the effect of

mapping two disjoint location names to a single location name, which would mean that ρh2

binds a single location name twice.

Lemma 62 (Location Name Substitution: Subtyping). For any location name substitution ρ,

1. If Γ ` τ1 <: τ2, then ρΓ ` ρτ1 <: ρτ2.

2. If Γ ` b1 <: b2, then ρΓ ` ρb1 <: ρb2.

3. If Γ ` h1 <: h2, then ρΓ ` ρh1 <: ρh2.

4. If Γ ` τ1/h1 <: τ2/h2, then ρΓ ` ρτ1/ρh1 <: ρτ2/ρh2.

183

Proof. Each case proceeds by straightforward induction on the assumed derivation, using the

previous cases, except for (4), which follows directly by (1) and (3).

Lemma 63 (Location Name Substitution: Well-Formedness). For any location name substitution ρ,

1. If Γ � τ, then ρΓ � ρτ.

2. If Γ � b, then ρΓ � ρb.

3. If |Locs(h)| = |Locs(ρh)| and Γ � h, then ρΓ � ρh.

4. If |Locs(h)| = |Locs(ρh)| and Γ � τ/h, then ρΓ � ρτ/ρh.

Proof. We prove each item separately.

1. Straightforward by cases on the rule used to prove Γ � τ and Definition 14, which is

oblivious to location names.

2. Straightforward induction on the structure of b, using (1).

3. The proof proceeds by induction on the derivation of Γ � h. We split cases on the final rule

used.

Case WF-HABSTRACT

By the form of the rule,

h = h0 ∗
∼
` 7→ b

Γ � h0 (63.1)
∼
` /∈ dom(h0) (63.2)

Γ �@ b (63.3)

By Fact 63.1 and the inductive hypothesis,

ρΓ � ρh0 (63.4)

By Fact 63.2 and |Locs(h)| = |Locs(ρh)|,

ρ(
∼
`) /∈ dom(ρh0) (63.5)

By Fact 63.3 and (2),

ρΓ �@ ρb (63.6)

184

By Fact 63.4, Fact 63.5, Fact 63.6, and WF-HABSTRACT,

ρΓ � h0 ∗ ρ
∼
` 7→ ρb

as required.

Case WF-HCONCRETE

By the form of the rule,

h = h0 ∗ `j 7→ b

Γ � h0 (63.7)

Γ � b (63.8)
∼
` ∈ dom(h0) (63.9)

`k /∈ dom(h0) (63.10)

By Fact 63.7 and the inductive hypothesis,

ρΓ � ρh0 (63.11)

By Fact 63.8 and (2),

ρΓ � ρb (63.12)

By Fact 63.9,

ρ(
∼
`) ∈ dom(ρh0) (63.13)

By Fact 63.10 and |Locs(h)| = |Locs(ρh)|,

ρ(`k) /∈ dom(ρh0) (63.14)

By Fact 63.11, Fact 63.12, Fact 63.13, Fact 63.14, and WF-HCONCRETE,

ρΓ � ρh0 ∗ ρ(`j) 7→ ρb

4. Follows immediately from (1) and (3).

Lemma 64 (Location Name Substitution: Pure Typing).

If Γ `m a : τ

then ρΓ `ρm a : ρτ.

185

Proof. The proof proceeds by induction on the derivation of Γ `m a : τ. We split cases on the

final rule used.

Case T-VAR

By the form of the rule,

a ≡ x

Γ(x) = {ν : t | φ}

τ = {ν : t | ν = x}

By Definition 32,

(ρΓ)(x) = {ν : ρt | φ}

By T-VAR,

ρΓ `ρm x : {ν : ρt | ν = x}

as required.

Case T-INT

Immediate.

Case T-REF

By the form of the rule,

a ≡ bref(r, n, z)

` ∈ Clocs(r, m) (64.1)

τ = {ν : ref(`, n) | ν = bref(r, n, z)}

By Definition 18, Definition 32, and Fact 64.1,

ρ` ∈ Clocs(r, ρm) (64.2)

By Fact 64.2 and T-REF,

ρ(Γ) `ρm bref(r, n, z) : {ν : ref(ρ`, n) | ν = bref(r, n, z)}

as required.

Case T-ARITH, T-PTRARITH, T-RELATION

Immediate from the form of the rule, the inductive hypothesis, and another application

186

of the rule originally used.

Case T-PURESUB

By the form of the rule,

Γ `m a : τ1 (64.3)

Γ ` τ1 <: τ (64.4)

Γ � τ (64.5)

By Fact 64.3 and the inductive hypothesis,

ρΓ `ρm a : ρτ1 (64.6)

By Fact 64.4 and Lemma 62,

ρΓ ` ρτ1 <: ρτ (64.7)

By Fact 64.5 and Lemma 63,

ρΓ � ρτ (64.8)

By Fact 64.6, Fact 64.7, Fact 64.8, and T-PURESUB,

ρΓ `ρm a : ρτ

as required.

Lemma 65 (Location Name Substitution Has No Effect on Pure Expressions). For any pure

expression a, ρa = a.

Proof. Immediate by the fact that no locations appear in pure expressions.

Lemma 66 (Location Name Substitution: Typing).

If G, Γ, h `m, I e : τ/h′,

� G, (66.1)

and |Locs(h)| = |Locs(ρh)| , (66.2)

then G, ρΓ, ρh `ρm, ρI ρe : ρτ/ρh′

Proof. The proof proceeds by induction on the derivation of G, Γ, h `m, I e : τ/h′. We split cases

on the final rule used.

Case T-PURE

Immediate by Lemma 65 and Lemma 64.

187

Case T-SUB

By the form of the rule,

G, Γ, h `m, I e : τ1/h1 (66.3)

Γ ` τ1/h1 <: τ/h′ (66.4)

Γ � τ/h′ (66.5)

By Fact 66.3, Fact 66.2, and the inductive hypothesis,

G, ρΓ, ρh `ρm, ρI ρe : ρτ1/ρh1 (66.6)

By Fact 66.4 and Lemma 62,

ρΓ ` ρτ1/ρh1 <: ρτ/ρh′ (66.7)

By Fact 66.4 and Lemma 59,

Locs(h1) = Locs(h′) (66.8)

By Fact 66.2 and Fact 66.8,

∣∣Locs(h′)
∣∣ = ∣∣Locs(ρh′)

∣∣ (66.9)

By Fact 66.5, Fact 66.9, and Lemma 63,

ρΓ � ρτ/ρh′ (66.10)

By Fact 66.6, Fact 66.7, Fact 66.10, and T-SUB,

G, ρΓ, ρh `ρm, ρI ρe : ρτ/ρh′

as required.

Case T-IF

By the form of the rule,

e ≡ if v then e1 else e2

Γ `m v : int(W, i) (66.11)

G, Γ; v 6= 0, h `m, I e1 : τ/h′ (66.12)

G, Γ; v = 0, h `m, I e2 : τ/h′ (66.13)

188

By Fact 66.11, Lemma 65, and Lemma 64,

ρΓ `ρm ρv : int(W, i) (66.14)

By Fact 66.12, Fact 66.2, and the inductive hypothesis,

G, ρΓ; ρv 6= 0, ρh `ρm, ρI ρe1 : ρτ/ρh′ (66.15)

By Fact 66.13, Fact 66.2, and the inductive hypothesis,

G, ρΓ; ρv = 0, ρh `ρm, ρI ρe2 : ρτ/ρh′ (66.16)

By Fact 66.14, Fact 66.15, Fact 66.16, and T-IF,

G, ρΓ, ρh `ρm, ρI if ρv then ρe1 else ρe2 : ρτ/ρh′

as required.

Case T-LET

By the form of the rule,

e ≡ let x = e1 in e2

I = I1 ∪ I2 (66.17)

I1 ∩ I2 = ∅ (66.18)

G, Γ, h `m, I1 e1 : τ1/h1 (66.19)

G, Γ; x : τ1, h1 `m, I2 e2 : τ2/h2 (66.20)

Γ � τ2/h2 (66.21)

By Fact 66.18 and Assumption 7,

ρI1 ∩ ρI2 = ∅ (66.22)

By Fact 66.19, Fact 66.2, and the inductive hypothesis,

G, ρΓ, ρh `ρm, ρI1 ρe1 : ρτ1/ρh1 (66.23)

By Fact 66.19 and Lemma 60,

Locs(h) = Locs(h1) (66.24)

By Fact 66.24 and Fact 66.2,

|Locs(h1)| = |Locs(ρh1)| (66.25)

189

By Fact 66.20, Fact 66.25, and the inductive hypothesis,

G, ρΓ; x : ρτ1, ρh1 `ρm, ρI2 ρe2 : ρτ2/ρh2 (66.26)

By Fact 66.19 and Lemma 60,

Locs(h2) = Locs(h1)

By the above and Fact 66.24,

Locs(h2) = Locs(h) (66.27)

By Fact 66.27, and Fact 66.2,

|Locs(h2)| = |Locs(ρh2)| (66.28)

By Fact 66.21, Fact 66.28, and Lemma 63,

ρΓ � ρτ2/ρh2 (66.29)

By Fact 66.17, Fact 66.22, Fact 66.23, Fact 66.26, Fact 66.29, and T-LET,

G, ρΓ, ρh `ρm, ρI ρe : ρτ2/ρh2

as required.

Case T-READ

By the form of the rule,

e ≡ ∗nv

Γ `m v : {ν : ref(`j, i) | Safe(ν, n)} (66.30)

h = h1 ∗ `j 7→ . . . , i : τ, . . . (66.31)

h′ = h

SizeOf(τ) = n (66.32)

By Fact 66.30, Lemma 65, and Lemma 64,

ρΓ `ρm ρv : {ν : ref(ρ(`j), i) | Safe(ν, n)} (66.33)

By Fact 66.31 and Definition 32,

ρh = ρh1 ∗ ρ(`j) 7→ . . . , i : ρτ, . . . (66.34)

190

By Fact 66.32 and Definition 7,

SizeOf(ρτ) = n (66.35)

By Fact 66.33, Fact 66.34, Fact 66.35, and T-READ,

G, ρΓ, ρh `ρm, ρI ∗nρv : ρτ/ρh′

as required.

Case T-SUPD

By the form of the rule,

e ≡ ∗v1 := v2

h = h1 ∗ `j 7→ . . . , n : τ1, . . . (66.36)

Γ `m v1 : {ν : ref(`j, n) | Safe(ν, SizeOf(τ2))} (66.37)

Γ `m v2 : τ2 (66.38)

SizeOf(τ2) = SizeOf(τ1) (66.39)

h′ = h1 ∗ `j 7→ . . . , n : τ2, . . . (66.40)

By Fact 66.36 and Definition 32,

ρh = ρh1 ∗ ρ(`j) 7→ . . . , n : ρτ1, . . . (66.41)

By Fact 66.37, Lemma 65, and Lemma 64,

ρΓ `ρm ρv1 : {ν : ref(ρ(`j), n) | Safe(ν, SizeOf(τ2))}

By Definition 7,

SizeOf(τ2) = SizeOf(ρτ2)

so

ρΓ `ρm ρv1 : {ν : ref(ρ(`j), n) | Safe(ν, SizeOf(ρτ2))}

(66.42)

By Fact 66.38, Lemma 65, and Lemma 64,

ρΓ `ρm ρv2 : ρτ2 (66.43)

191

By Fact 66.40 and Definition 32,

ρh′ = ρh1 ∗ ρ(`j) 7→ . . . , n : ρτ2, . . . (66.44)

By Fact 66.39 and Definition 7,

SizeOf(ρτ2) = SizeOf(ρτ1) (66.45)

By Fact 66.41, Fact 66.42, Fact 66.43, Fact 66.44, and T-SUPD,

G, ρΓ, ρh `ρm, ρI ∗ρv1 := ρv2 : void/ρh′

as required.

Case T-WUPD

By the form of the rule,

e ≡ ∗v1 := v2

Γ `m v1 : {ν : ref(`j, n+m) | Safe(ν, SizeOf(τ))} (66.46)

Γ `m v2 : τ (66.47)

h = h1 ∗ `j 7→ . . . , n+m : τ, . . . (66.48)

h′ = h

By Fact 66.46, Lemma 65, and Lemma 64,

ρΓ `ρm ρv1 : {ν : ref(ρ(`j), n+m) | Safe(ν, SizeOf(τ))}

By Definition 7,

SizeOf(τ) = SizeOf(ρτ)

so

ρΓ `ρm ρv1 : {ν : ref(ρ(`j), n+m) | Safe(ν, SizeOf(ρτ))} (66.49)

By Fact 66.47, Lemma 65, and Lemma 64,

ρΓ `ρm ρv2 : ρτ (66.50)

By Fact 66.48 and Definition 32,

ρh = ρh1 ∗ ρ(`j) 7→ . . . , n+m : ρτ, . . . (66.51)

192

By Fact 66.49, Fact 66.50, Fact 66.51, T-WUPD,

G, ρΓ, ρh `ρm, ρI ∗ρv1 := ρv2 : void/ρh

as required.

Case T-UNFOLD

By the form of the rule,

e ≡ letu x = unfold v in e′

I = I1 ∪ {`j} (66.52)

h′ = h2

Γ `m v : {ν : ref(
∼
` , iy) | ν 6= 0} (66.53)

h = h0 ∗
∼
` 7→ nk : τk, i+ : τ+ (66.54)

xk disjoint (66.55)

xk /∈ Γ, e, FV(h) (66.56)

θ = [@nk 7→ xk] (66.57)

Γ1 = Γ; xk : θτk (66.58)

`j /∈ Γ, h, m (66.59)

h1 = h ∗ `j 7→ nk : {ν = xk}, i+ : θτ+ (66.60)

G, Γ1; x : {ν : ref(`j, iy) | ν = v}, h1 `m, I e : τ2/h2 (66.61)

Γ1 � h1 (66.62)

Γ � τ2/h2 (66.63)

By Fact 66.52 and Assumption 7,

ρI = ρI1 ∪ {ρ(`j)} (66.64)

By Fact 66.53, Lemma 65, and Lemma 64,

ρΓ `ρm ρv : {ν : ref(ρ
∼
` , iy) | ν 6= 0} (66.65)

By Fact 66.54 and Definition 32,

ρh = ρh0 ∗ ρ
∼
` 7→ nk : ρτk, i+ : ρτ+ (66.66)

By Fact 66.56, Fact 66.66, and Definition 32,

xk /∈ ρΓ, ρe, FV(ρh) (66.67)

193

By Fact 66.58 and Definition 32,

ρΓ1 = ρΓ; xk : ρθτk (66.68)

By Fact 66.59 and Definition 32,

ρ(`j) /∈ ρΓ, ρh, ρm (66.69)

By Fact 66.60 and Definition 32,

ρh1 = ρh ∗ ρ(`j) 7→ nk : ρ({ν = xk}), i+ : ρθτ+

(66.70)

By Fact 66.2, Fact 66.70, and Definition 31,

|Locs(h1)| = |Locs(ρh1)| (66.71)

By Fact 66.71, Fact 66.61, and the inductive hypothesis,

G, ρΓ1; x : {ν : ref(ρ(`j), iy) | ν = v}, ρh1 `ρm, ρI1 ρe′ : ρτ2/ρh2 (66.72)

By Fact 66.62, Fact 66.71, and Lemma 63,

ρΓ1 � ρh1 (66.73)

By Fact 66.1, Fact 66.72, and Lemma 60,

Locs(h1) = Locs(h2)

so

|Locs(h2)| = |Locs(ρh2)| (66.74)

By Fact 66.74, Fact 66.63, and Lemma 63,

ρΓ � ρτ2/ρh2 (66.75)

By Fact 66.64, Fact 66.65, Fact 66.66, Fact 66.55, Fact 66.67, Fact 66.57, Fact 66.68, Fact 66.69,

Fact 66.70, Fact 66.72, Fact 66.73, Fact 66.75, and T-UNFOLD,

G, ρΓ, ρh `ρm, ρI letu x = unfold ρv in ρe′ : ρτ2/ρh2

as required.

194

Case T-FOLD

By the form of the rule,

e ≡ fold `

h = h0 ∗
∼
` 7→ b1 ∗ `j 7→ b2 (66.76)

h′ = h0 ∗
∼
` 7→ b1 (66.77)

Γ ` b2 <: b1 (66.78)

By Fact 66.76 and Definition 32,

ρh = ρh0 ∗ ρ
∼
` 7→ ρb1 ∗ ρ(`j) 7→ ρb2 (66.79)

By Fact 66.78 and Lemma 62,

ρΓ ` ρb2 <: ρb1 (66.80)

By Fact 66.77 and Definition 32,

ρh = ρh0 ∗ ρ
∼
` 7→ ρb1 (66.81)

By Fact 66.79, Fact 66.80, Fact 66.81, and T-FOLD,

G, ρΓ, ρh `ρm, ρI fold ρ` : void/ρh′

as required.

Case T-CALL

By the form of the rule,

e ≡ f (vj)[` f 7→ `]

h = hu ∗ hm

h′ = hu ∗ θh′f

τ = τ′

Γ � hm (66.82)

Γ � hu (66.83)

G(f) = (xj : τj)/h f → τ′/h′f (66.84)

θ = [xj 7→ vj][` f 7→ `] (66.85)

Γ � hu ∗ θh′f (66.86)

Γ `m vj : θτj (66.87)

Γ ` hm <: θh f (66.88)

195

By Fact 66.82, Fact 66.2, and Lemma 63,

ρΓ � ρhm (66.89)

By Fact 66.83, Fact 66.2, and Lemma 63,

ρΓ � ρhu (66.90)

By Fact 66.88 and Lemma 59,

Locs(hm) = Locs(θh f) (66.91)

By Fact 66.84, Definition 25, and Fact 66.1,

Locs(h′f) = Locs(h f) (66.92)

By Fact 66.91 and Fact 66.92,

Locs(θh′f) = Locs(hm) (66.93)

By Fact 66.93 and Fact 66.2,∣∣∣Locs(hu ∗ θh′f)
∣∣∣ = ∣∣∣Locs(ρhu ∗ ρθh′f)

∣∣∣ (66.94)

By Fact 66.86, Fact 66.94, and Lemma 63,

ρΓ � ρhu ∗ ρθh′f (66.95)

By Fact 66.87, Lemma 65, and Lemma 64,

ρΓ `ρm ρvj : ρθτj (66.96)

By Fact 66.88 and Lemma 64,

ρΓ ` ρhm <: ρθh f (66.97)

By Fact 66.89, Fact 66.90, Fact 66.84, Fact 66.95, Fact 66.96, Fact 66.97, and T-CALL,

G, ρΓ, ρh `ρm, ρI f (ρvj) : ρτ′/ρh′

as required.

Case T-MALLOC

By the form of the rule,

196

e ≡ malloc(v)

h′ = h ∗ `j 7→ b

I = I1 ∪ {`j} (66.98)

τ = {ν : ref(`j, 0) | Allocated(ν, v)}

`j /∈ Γ, h, m (66.99)

h = h0 ∗
∼
` 7→ b (66.100)

Γ � h ∗ `j 7→ b (66.101)

Γ `m v : {ν : int(W, i) | ν ≥ 0} (66.102)

By Fact 66.98 and Assumption 7,

ρI = ρI1 ∪ {ρ(`j)} (66.103)

By Fact 66.99 and Definition 32,

ρ(`j) /∈ ρΓ, ρh, ρm (66.104)

By Fact 66.100 and Definition 32,

ρh = ρh0 ∗ ρ
∼
` 7→ ρb (66.105)

By Fact 66.101, Fact 66.2, and Lemma 63,

ρΓ � ρh ∗ ρ(`j) 7→ ρb (66.106)

By Fact 66.102, Lemma 65, and Lemma 64,

ρΓ `ρm ρv : {ν : int(W, i) | ν ≥ 0} (66.107)

By Fact 66.103, Fact 66.104, Fact 66.105, Fact 66.106, Fact 66.107, and T-MALLOC,

G, ρΓ, ρh `ρm, ρI malloc(ρv) : ρτ/ρh′

as required.

C.16 Heap Weakening

Lemma 67 (Heap Weakening: Well-Formedness).

If Γ � h1,

Γ � h2,

and dom(h1) ∩ dom(h2) = ∅,

then Γ � h1 ∗ h2.

197

Proof. The proof proceeds by straightforward induction on the derivation of Γ � h2.

Lemma 68 (Heap Weakening: Subtyping).

If Γ ` h1 <: h2

then Γ ` h ∗ h1 <: h ∗ h2.

Proof. The proof proceeds by straightforward induction on the derivation of Γ ` h1 <: h2, using

Lemma 36.

Lemma 69 (Heap Weakening: Typing).

If G, Γ, h `m, I e : τ/h′,

Γ � h,

Γ � h2,

dom(h1) ∩ dom(heap2) = ∅,

and Clocs(h2) ∩ I = ∅,

then G, Γ, h2 ∗ h `m, I e : τ/h2 ∗ h′.

Proof. The proof proceeds by straightforward induction on the derivation of G, Γ, h `m, I e : τ/h′,

using Lemma 67 and Lemma 68.

C.17 Canonical Forms

Lemma 70 (Subtyping Preserves Sizes). If Γ ` τ1 <: τ2, then SizeOf(τ1) = SizeOf(τ2).

Proof. The proof proceeds by straightforward induction on the derivation of Γ ` τ1 <: τ2.

Lemma 71 (Value Sizes). If ∅ `m v : τ, then SizeOf(v) = SizeOf(τ).

Proof. The proof proceeds by straightforward induction on the derivation of ∅ `m v : τ, using

Lemma 70.

Lemma 72 (Canonical Forms). For any value v:

1. If ∅ `m v : int(w, i), then v = n|w| for some n ∈ [[i]].

2. If ∅ `m v : ref(`, i), then either v = 0|W| or v = bref(r, n, z) for some n ∈ [[i]] and there exists

`j v ` such that `j ∈ Clocs(r, m).

Proof. The proofs proceed by induction on the given typing derivation, splitting cases on the

final rule used.

198

1. The proof proceeds by induction on the derivation of ∅ `m v : int(w, i). We split cases on

the final rule used.

Case T-INT

Immediate.

Case T-VAR, T-REF, T-ARITH, T-PTRARITH, T-RELATION

Impossible.

Case T-PURESUB

By the form of the rule,

∅ `m v : τ (72.1)

∅ ` τ <: int(w, i) (72.2)

By Fact 72.2 and Lemma 34,

τ = int(w, i1) (72.3)

By the Fact 72.1, Fact 72.3, and the inductive hypothesis,

v = n|w|

n ∈ [[i1]]

for some n. By Fact 72.2 and Lemma 34,

i1
∼
⊆ i

By Proposition 1,

n
∼
⊆ i

By Proposition 2,

n ∈ [[i]]

as required.

2. The proof proceeds by induction on the derivation of ∅ `m v : ref(`, i). We split cases on

the final rule used.

199

Case T-VAR

Impossible.

Case T-REF

Immediate, using Proposition 1, Proposition 2, and v is reflexive by Definition 21.

Case T-INT, T-ARITH, T-PTRARITH, T-RELATION

Impossible.

Case T-PURESUB

By the form of the rule,

∅ `m v : τ (72.4)

∅ ` τ <: ref(`, i) (72.5)

By Fact 72.5 and Lemma 34, there are two cases:

Case 1

τ = {ν : ref(`1, i1) | φ1} (72.6)

`1 v ` (72.7)

i1
∼
⊆ i (72.8)

Γ � φ1 ⇒ φ

By the Fact 72.4, Fact 72.6, and the inductive hypothesis, either

v = 0|W|

in which case we are done, or

v = bref(r, n, z)

n ∈ [[i1]]

∃`j v `.`j ∈ Clocs(r, m)

for some n. Note that, by Definition 21, this final condition implies

∃`j v `1.`j ∈ Clocs(r, m)

200

By Fact 72.8 and Proposition 1,

n
∼
⊆ i

By Proposition 2,

n ∈ [[i]]

as required.

Case 2

τ = {ν : int(W, 0) | φ1} (72.9)

By Fact 72.4, (1), and Fact 72.9,

v = 0|W|

as required.

C.18 Unfolding, Folding, Heap Modeling, Well-Formedness

This section presents the key lemmas that relate the location unfold and fold operations

to our concepts of heap modeling and well-formedness.

Lemma 73 (Modeling of Freshly-Allocated Locations). For any block b such that ∅ � b,

Z 7→ 0|1| �m b0.

Proof. We assume that the run-time block Z 7→ 0|1| can be treated as the run-time block containing

the bindings

{n 7→ 0|SizeOf(τ)| | n ∈ [[i]], i : τ ∈ b0} ∪ {n 7→ 0|1| | n /∈ dom(b0)}.

This assumption is justified by the facts that the run-time blocks have the same physical repre-

sentation in memory and that all bindings in the block are disjoint.

The remainder of the proof proceeds by straightforward induction on the structure of b,

using BM-SINGLE, BM-SEQUENCE, and the definition of b0.

201

Lemma 74 (Fresh Concrete Location Preserves Heap Modeling).

If s �m h, (74.1)

c �m b, (74.2)

`j /∈ dom(m) (74.3)

m′ = m[`j 7→ r], (74.4)

h′ = h ∗ `j 7→ b (74.5)

s′ = s[r 7→ c] (74.6)

then s′ �m′ h′.

Proof. By Fact 74.1 and Definition 23,

∀`′k ∈ dom(h). `′k ∈ dom(m) (74.7)

rng(m) ⊆ dom(s) (74.8)

And, for all r′ 7→ c′ ∈ s, either

exists `′k ∈ Clocs(r′, m),

h = h0 ∗ `′k 7→ b′,

c′ �m b′,

or

Clocs(r′, m) ∩ dom(h) = ∅,

h = h0 ∗
∼
`
′
7→ b′,

c′ �m b′

By Fact 74.3 and Fact 74.4,

m ⊆ m′ (74.9)

By Fact 74.4, Fact 74.5, Fact 74.7, and Fact 74.9,

∀`′k ∈ dom(h′). `′k ∈ dom(m′) (74.10)

By Fact 74.4, Fact 74.8, and Fact 74.6,

rng(m′) ⊆ dom(s′) (74.11)

By Fact 74.10 and Fact 74.11, we have satisifed the first two conditions of Definition 23. To show

the final condition, we choose an arbitrary r′ 7→ c′ ∈ s′ and split cases on whether r′ = r.

202

Case r′ 6= r

We again split cases, this time on how the location was modeled according to Fact 74.1

and Definition 23.

Case exists `′k ∈ Clocs(r′, m), h = h0 ∗ `′k 7→ b′, c′ �m b′

Then by Fact 74.9 and Definition 19,

`′k ∈ Clocs(r′, m′)

By Fact 74.5,

h′ = h′0 ∗ `′k 7→ b′

And, by Fact 74.9 and Lemma 24,

c′ �m′ b′

Thus, part (3a) of Definition 23 remains satisfied.

Case exists `′k ∈ Clocs(r′, m), Clocs(r′, m) ∩ dom(h) = ∅, h = h0 ∗
∼
`
′
7→ b′, c′ �m b′

Then by Fact 74.9 and Definition 19,

`′k ∈ Clocs(r′, m′)

Note that

Clocs(r′, m) ∩ dom(h) = ∅

implies, by, r′ 6= r, Fact 74.4, Fact 74.3, Definition 19, that

Clocs(r′, m′) ∩ dom(h′) = ∅

By Fact 74.5,

h′ = h′0 ∗
∼
`
′
7→ b′

Finally, by Fact 74.9 and Lemma 24,

c′ �m′ b′

Thus, part (3b) of Definition 23 remains satisfied.

Case r′ = r

Then

203

c′ = c

By Fact 74.4 and Definition 19,

`j ∈ Clocs(r, m′)

By Fact 74.5,

h′ = h ∗ `j 7→ b

By Fact 74.2 and Lemma 24,

c �m′ b

Thus, part (3a) of Definition 23 is satisfied.

Lemma 75 (Unfolding Preserves Block Modeling).

If c �m nk : {ν : tk | φk}, i+j : τj

then c �m nk : {ν : tk | ν = c(nk)}, i+j : θτj

where θ = [@nk 7→ c(nk)]

Proof. The proof proceeds by induction on the derivation of c �m nk : {ν : tk | φk}, i+j : τj. We

split cases on the final rule used.

Case BM-SEQUENCE

Trivial, as the substitution is empty.

Case BM-SINGLE

By the form of the rule,

nk : {ν : tk | φk} = n : {ν : tn | φn}, nm : {ν : tm | φm}

∅ `m c(n) : {ν : tn | φn} (75.1)

c �m nm : {ν : tm | φm[@n 7→ c(n)]}, i+j : τj[@n 7→ c(n)] (75.2)

By the inductive hypothesis and Fact 75.2,

c �m nm : {ν : tm | ν = c(nm)}, i+j : θ′(τj[@n 7→ c(n)])

where θ′ = [nm 7→ c(nm)]

Equivalently,

c �m nm : {ν : tm | ν = c(nm)}, i+j : θτj

204

Since @n ∈ dom(θ) and @n /∈ rng(θ), this is equivalent to

c �m nm : {ν : tm | (ν = c(nm))[@n 7→ c(n)]}, i+j : (θτj)[@n 7→ c(n)] (75.3)

By Fact 75.1 and Lemma 50,

∅ `m c(n) : {ν : tn | ν = c(n)} (75.4)

By Fact 75.3, Fact 75.4, and BM-SINGLE,

c �m n : {ν : tn | ν = c(n)}, nm : {ν : tm | ν = c(nm)}, i+j : θτj

as required.

Lemma 76 (Unfolding Preserves Heap Modeling).

If s �m h,

h = h0 ∗
∼
` 7→ b,

b = nk : {ν : tk | φk}, i+ : τ+,

c = s(r),

c �m b, (76.1)

`j /∈ dom(m),

m′ = m[`j 7→ r],

θ = [@nk 7→ c(nk)], (76.2)

h′ = h0 ∗
∼
` 7→ b ∗ `j 7→ nk : {ν : tk | ν = c(nk)}, i+ : θτ+,

then s �m′ h′.

Proof. By Fact 76.1, Fact 76.2, and Lemma 75,

c �m nk : {ν : tk | ν = c(nk)}, i+ : θτ+.

The rest follows by the above, the given premises, and Lemma 74, with s′ = s[r 7→ s(r)] = s.

Lemma 77 (Subtyping Preserves Block Modeling).

If c �m b1

and ∅ ` b1 <: b2,

then c �m b2.

Proof. The proof proceeds by induction on the derivation of ∅ ` b1 <: b2. We split cases on the

final rule used.

205

Case <:-SINGLE

By the form of the rule,

b1 = n : τ1, b′1

b2 = n : τ2, b′2

∅ ` τ1 <: τ2 (77.1)

x : τ1 ` b′1[@n 7→ x] <: b′2[@n 7→ x] (77.2)

The only rule that could have been used to prove c �m b1 is BM-SINGLE, from which we have

∅ `m c(n) : τ1 (77.3)

c �m b′1[@n 7→ c(n)] (77.4)

By Fact 77.3 and WFSUBST-VAR,

x : τ1 �m [x 7→ c(n)] (77.5)

By Fact 77.2, Fact 77.5, and Lemma 55,

∅ ` b′1[@n 7→ c(n)] <: b′2[@n 7→ c(n)] (77.6)

By Fact 77.4, Fact 77.6, and the inductive hypothesis,

c �m b′2[@n 7→ c(n)] (77.7)

By Fact 77.1, Fact 77.3, and T-PURESUB,

∅ `m c(n) : τ2 (77.8)

By Fact 77.8, Fact 77.7, and BM-SINGLE,

c �m n : τ2, b′2

as required.

Case <:-SEQUENCE

By the form of the rule,

b1 = i+ : τ1, b′1

b2 = i+ : τ2, b′2

∅ ` τ1 <: τ2 (77.9)

∅ ` b′1 <: b′2 (77.10)

206

The only rule that could have been used to prove c �m b1 is BM-SEQUENCE, from which we have

∀n ∈ dom(c) ∩ [[i+]]. ∅ `m c(n) : τ1 (77.11)

c �m b′1 (77.12)

By Fact 77.9, Fact 77.11, and T-PURESUB,

∀n ∈ dom(c) ∩ [[i+]]. ∅ `m c(n) : τ2 (77.13)

By Fact 77.10, Fact 77.12, and the inductive hypothesis,

c �m b′2 (77.14)

By Fact 77.13, Fact 77.14, and BM-SEQUENCE,

c �m i+ : τ2, b′2

as required.

Lemma 78 (Subtyping Preserves Heap Modeling).

If s �m h1

and ∅ ` h1 <: h2

then s �m h2.

Proof. The proof follows straightforwardly by induction on the derivation of ∅ ` h1 <: h2, using

s �m h1, Definition 23, and Lemma 77.

Lemma 79 (Well-Formed Substitutions from Block Contents).

If c �m nk : τk, i+ : τ+,

xk disjoint,

and θ = [xk 7→ c(nk)],

then xk : θτk �. θ

Proof. The proof proceeds by induction on the derivation of c �m nk : τk, i+ : τ+, using

WFSUBST-VAR.

Lemma 80 (One Location Name Mapped Per Run-Time Location).

If ∅ `m bref(r, n, z) : {ν : ref(
∼
` , i) | φ}, (80.1)

� m, (80.2)

and `′j ∈ Clocs(r, m), (80.3)

then `′ = `.

207

Proof. By Fact 80.1 and Lemma 72, there exists

`′′k ∈ Clocs(r, m) (80.4)

`′′k v
∼
` (80.5)

By Fact 80.5 and Definition 21,

`′′ = ` (80.6)

By Fact 80.3, Fact 80.4, Fact 80.2, and Definition 20,

`′′ = `′ (80.7)

By Fact 80.6 and Fact 80.7,

`′ = `

as required.

Lemma 81 (Folding Preserves Heap Modeling).

If s �m h1, (81.1)

h1 = h2 ∗ `j 7→ b1,

h2 = h0 ∗
∼
` 7→ b2,

∅ ` b1 <: b2, (81.2)

∅ � h1, (81.3)

and � m, (81.4)

then s �m h2.

Proof. We note that, by assumption, parts (1) and (2) of Definition 23 are satisfied. It only remains

to show that part (3) is satisfied.

Let r 7→ c ∈ s. By Fact 81.1 and part (3) of Definition 23, there are two cases:

Case exists `′k ∈ Clocs(r, m), h1 = h′0 ∗ `′k 7→ b, and c �m b

Then there are two cases:

Case `′ 6= `

Then h2 = h′′0 ∗ `′k 7→ b for some h′′0 . By assumption, `′k ∈ Clocs(r, m) and c �m b. Thus,

part (3a) of Definition 23 is satisfied.

Case `′ = `

The only rule which could have been used to prove Fact 81.3 is WF-HCONCRETE. By

208

the form of the rule,

`q /∈ dom(h2) (81.5)

for any q, so we have `k = `j and b = b1. By assumption, Fact 81.2, and Lemma 77,

c �m b2 (81.6)

By Fact 81.4 and Definition 20,

if `′′z ∈ Clocs(r, m) then `′′ = `

So by Fact 81.5,

Clocs(r, m) ∩ dom(h2) = ∅ (81.7)

So by the definition of h2, Fact 81.6, and Fact 81.7, part (3b) of Definition 23 is satisfied.

Case exists `′k ∈ Clocs(r, m), Clocs(r, m) ∩ dom(h1) = ∅, h1 = h′0 ∗
∼
`
′
7→ b, and c �m b

Note that

dom(h2) (dom(h1)

Note also that h2 contains all the same abstract location bindings as h1, so

h2 = h′′0 ∗
∼
`
′
7→ b

And by assumption we have

c �m b

Thus, part (3b) of Definition 23 is satisfied.

Lemma 82 (Just-Unfolded Location Models Corresponding Abstract Location).

If ∅ � h ∗ `k 7→ b2, (82.1)

h = h0 ∗
∼
` 7→ b,

`j ∈ Clocs(r, m), (82.2)

� m, (82.3)

s �m h, (82.4)

and s(r) = c,

then c �m b.

209

Proof. The only rule which could have been used to prove Fact 82.1 is WF-HCONCRETE, by

which we have

`u /∈ dom(h) for any u (82.5)

∅ � h (82.6)

Suppose

`′′v ∈ Clocs(r, m) (82.7)

By Fact 82.2, Fact 82.3, and Definition 20,

`′′ = ` (82.8)

By Fact 82.5 and Fact 82.8,

Clocs(r, m) ∩ dom(h) = ∅ (82.9)

By Fact 82.4, Fact 82.9, and Definition 23, there exists b′ such that

h = h′0 ∗
∼
` 7→ b′ (82.10)

c �m b′ (82.11)

By Fact 82.10, Fact 82.6, and WF-ABSTRACT,

∼
` /∈ dom(h′0)

So

b′ = b

and by Fact 82.11,

c �m b

as required.

Lemma 83 (Uniqueness of Modeled Concrete Locations).

If s �m h, (83.1)

h = h0 ∗ `j 7→ b,

r ∈ dom(s), (83.2)

`j ∈ Clocs(r, m), (83.3)

∅ � h, (83.4)

and � m, (83.5)

then s(r) �m b.

210

Proof. By Definition 23, either part (3a) or (3b) of Definition 23 must apply to s(r). By Fact 83.3,

Clocs(r, m) ∩ dom(h) 6= ∅

So (3b) does not apply; instead, by (3a), there must exist some `′k ∈ Clocs(r, m) such that

h = h′0 ∗ `′k 7→ bk

s(r) �m bk

By Fact 83.3, Fact 83.5, and Definition 20,

`′ = `

So

h = h′0 ∗ `k 7→ bk

The only rule that could have been used to prove Fact 83.4 is WF-HCONCRETE, by which we

have

`k = `j

bk = b

So

s(r) �m b

as required.

Lemma 84 (Types of Modeled Values).

If ∅ � b1, i : τ, b2, (84.1)

c �m b1, i : τ, b2,

and n ∈ [[i]],

then ∅ `m c(n) : τ.

Proof. By induction on the derivation of c �m b1, i : τ, b2. We split cases on the final rule used.

Case BM-SINGLE

By the form of the rule,

b1, i : τ, b2 = n : τ′, b′

∅ `m c(n) : τ′ (84.2)

c �m b′[@n 7→ c(n)] (84.3)

211

If b1 is empty, then i = n, τ = τ′, and the desired conclusion follows by Fact 84.2. Otherwise, by

Fact 84.1 and Lemma 29, no type in the block contains free locations, so

b′[@n 7→ c(n)] = b′

so by Fact 84.3,

c �m b′ (84.4)

By Fact 84.1 and WF-NDBLOCK,

∅ � b′ (84.5)

The desired conclusion then follows by Fact 84.4, Fact 84.5, and the inductive hypothesis.

Case BM-SEQUENCE

By the form of the rule,

b1, i : τ, b2 = i+ : τ′, b′

∀m ∈ dom(c) ∩ [[i+]]. ∅ `m c(m) : τ′ (84.6)

c �m b′ (84.7)

If b1 is empty, then i = i+, τ = τ′, and the desired conclusion follows by Fact 84.6. Otherwise,

the rest of the case proceeds as in the case for BM-SINGLE.

Lemma 85 (Types of Read Values).

If ∅ `m bref(r, n, z) : ref(`j, i), (85.1)

h = h0 ∗ `j 7→ . . . , i : τ, . . ., (85.2)

∅ � h, (85.3)

s �m h, (85.4)

and � m, (85.5)

then ∅ `m s(r)(n) : τ.

Proof. By Fact 85.1 and Lemma 72,

n ∈ [[i]] (85.6)

`j ∈ Clocs(r, m) (85.7)

By Fact 85.7, Fact 85.4, Definition 19, and Definition 23,

r ∈ dom(s) (85.8)

212

By Fact 85.3, Fact 85.4, Fact 85.5, Fact 85.2, Fact 85.8, Fact 85.7, and Lemma 83,

s(r) �m . . . , i : τ, . . . (85.9)

The only rule that could have been used to prove Fact 85.3 is WF-HCONCRETE, by which we

have

∅ � . . . , i : τ, . . . (85.10)

By Fact 85.9, Fact 85.10, Fact 85.6, and Lemma 84,

∅ `m s(r)(n) : τ

as required.

Lemma 86 (Irrelevant Offsets in Modeling).

If c �m i : τ

and n /∈ [[i]],

then c[n 7→ v] �m i : τ.

Proof. Straightforward induction on the derivation of c �m i : τ.

Lemma 87 (Weak Updates Preserve Block Modeling).

If c �m b,

b = b1, i+ : τ, b2,

∅ � b, (87.1)

n ∈ [[i+]], (87.2)

and ∅ `m v : τ, (87.3)

then Write(c, n, v) �m b.

Proof. The proof proceeds by induction on the derivation of c �m b. We split cases on the final

rule used.

Case BM-SINGLE

By the form of the rule,

b1 = p : τp, b′1

∅ `m c(p) : τp (87.4)

c �m (b′1, i+ : τ, b2)[@p 7→ c(p)]

213

By Fact 87.1 and Lemma 29, no type in the above block can contain a location, so this is equivalent

to

c �m b′1, i+ : τ, b2 (87.5)

The only rule that could have been used to prove Fact 87.1 is WF-NDBLOCK, from which we

have

∅ � b′1, i+ : τ, b2 (87.6)

By Fact 87.5, Fact 87.6, Fact 87.2, Fact 87.3, and the inductive hypothesis,

Write(c, n, v) �m b′1, i+ : τ, b2

Again, this is equivalent to

Write(c, n, v) �m (b′1, i+ : τ, b2)[@p 7→ c(p)] (87.7)

By Fact 87.1 and WF-NDBLOCK,

p ∩
⋃

OffsetsOf(i+, τ) = ∅

So by Fact 87.4 and Definition 10,

∅ `m (Write(c, n, v))(p) : τp (87.8)

By Fact 87.8, Fact 87.7, and BM-SINGLE,

Write(c, n, v) �m b

as required.

Case BM-SEQUENCE

We split cases on whether b1 is empty.

Case b1 is empty

By the form of the rule,

∀k ∈ dom(c) ∩ [[i+]]. ∅ `m c(k) : τ (87.9)

c �m b2 (87.10)

The only rule that could have been used to prove Fact 87.1 is WF-NDBLOCK, from which we

have

DisjointOffsets(i+ : τ)

214

That is, for any p, q ∈ [[i+]] such that p 6= q,

(
⋃

OffsetsOf(p, τ)) ∩ (
⋃

OffsetsOf(q, τ)) = ∅ (87.11)

By Fact 87.3, Fact 87.2, Fact 87.9, Fact 87.11, and Definition 10,

∀k ∈ dom(Write(c, n, v)) ∩ [[i+]]. ∅ `m (Write(c, n, v))(k) : τ (87.12)

By Fact 87.1 and WF-NDBLOCK, all OffsetsOf(i+, τ) are disjoint from all OffsetsOf(b2). Thus,

by Fact 87.10 and Lemma 86,

Write(c, n, v) �m b2 (87.13)

By Fact 87.12, Fact 87.13, and BM-SEQUENCE,

Write(c, n, v) �m i+ : τ, b2

as required.

Case b1 = i+1 : τ1, b′1
By the form of the rule,

∀k ∈ dom(c) ∩ [[i+1]]. ∅ `m c(k) : τ1 (87.14)

c �m b′1, i+ : τ, b2 (87.15)

By Fact 87.1 and WF-NDBLOCK,

∅ � b′1, i+ : τ, b2 (87.16)

(
⋃

OffsetsOf(i+1 , τ1)) ∩ (
⋃

OffsetsOf(i+, τ)) = ∅ (87.17)

By Fact 87.15, Fact 87.16, Fact 87.2, Fact 87.3, and the inductive hypothesis,

Write(c, n, v) �m b′1, i+ : τ, b2 (87.18)

By Fact 87.14 Fact 87.17, and Definition 10,

∀k ∈ dom(Write(c, n, v)) ∩ [[i+1]]. ∅ `m c(k) : τ1 (87.19)

By Fact 87.18 and Fact 87.19 and BM-SEQUENCE,

Write(c, n, v) �m i+1 : τ1, b′1, i+ : τ, b2

as required.

215

Lemma 88 (Non-Dependent Partial Block Well-Formedness). Γ � b1, b2 iff Γ � b1 and Γ � b2.

Proof. Immediate by the form of WF-NDBLOCK.

Lemma 89 (Strong Update Preserves Block Modeling).

If b = b1, n : τ1, b2,

c �m b, (89.1)

∅ � b, (89.2)

∅ `m v : τ2, (89.3)

SizeOf(τ2) = SizeOf(τ1), (89.4)

and ∅ � τ2, (89.5)

then Write(c, n, v) �m b1, n : τ2, b2.

Proof. First, we note that the only rule that could have been used to prove Fact 89.2 is WF-

NDBLOCK. By the form of the rule,

b = ij : τj

DisjointOffsets(ij : τj) (89.6)

∀j.∅ � τj (89.7)

Also, by Definition 7, Fact 89.3, Fact 89.4, and Lemma 71,

SizeOf(v) = SizeOf(τ1)

so that

[n, n + SizeOf(v)) = OffsetsOf(n, τ1) (89.8)

The rest of the proof proceeds by induction on the derivation of c �m b1, n : τ1, b2. We

split cases on the final rule used.

Case BM-SINGLE

By the form of the rule, we have

b = k : τ, b′1

∅ `m c(k) : τ (89.9)

c �m b2[@k 7→ c(k)] (89.10)

By Fact 89.7, the types of b2 cannot contain locations, so Fact 89.10 is equivalent to

c �m b2 (89.11)

216

We further split cases on whether b1 is empty.

Case b1 is empty

Then k = n and b′1 = b2. By Fact 89.6 and Fact 89.8,

[n, n + SizeOf(v)) ∩OffsetsOf(b2) = ∅ (89.12)

By Fact 89.12, Definition 10, and Lemma 86,

Write(c, n, v) �m b2

Since b2 cannot contain offsets, this is equivalent to

Write(c, n, v) �m b2[@n 7→ v] (89.13)

By Fact 89.3, Fact 89.13, and BM-SINGLE,

Write(c, n, v) �m n : τ2, b2 (89.14)

as required.

Case b1 = k : τ, b′1
By Fact 89.6,

n 6= k

Then by Fact 89.9,

∅ `m (Write(c, n, v))(k) : τ (89.15)

By Fact 89.2 and Lemma 88,

∅ � b′1, n : τ1, b2

By Fact 89.7, this is equivalent to

∅ � (b′1, n : τ1, b2)[@k 7→ c(k)] (89.16)

The only rule which could have been used to prove Fact 89.1 is BM-SINGLE, from which we have

c �m (b′1, n : τ1, b2)[@k 7→ c(k)] (89.17)

By Fact 89.17, Fact 89.16, Fact 89.3, Fact 89.5, Fact 89.4, and the inductive hypothesis,

Write(c, n, v) �m b′1, n : τ2, b2

217

By Fact 89.7, this is equivalent to

Write(c, n, v) �m (b′1, n : τ2, b2)[@k 7→ c[n 7→ v](k)] (89.18)

By Fact 89.15, Fact 89.18, and BM-SINGLE,

Write(c, n, v) �m b1, n : τ2, b2

as required.

Case BM-SEQUENCE

By the form of the rule, we have

b1 = i+ : τ, b′1

∀k ∈ dom(c) ∩ [[i+]]. ∅ `m c(k) : τ (89.19)

c �m b′1, n : τ1, b2 (89.20)

By Fact 89.6 and Fact 89.8,

[n, n + SizeOf(v)) ∩ [[i+]] = ∅ (89.21)

By Fact 89.21, Fact 89.19, and Definition 10,

∀k ∈ dom(Write(c, n, v)) ∩ [[i+]]. ∅ `m (Write(c, n, v))(k) : τ (89.22)

By Fact 89.2 and Lemma 88,

∅ � b′1, n : τ2, b2 (89.23)

By Fact 89.20, Fact 89.23, Fact 89.3, Fact 89.5, Fact 89.4, and the inductive hypothesis,

Write(c, n, v) �m b′1, n : τ2, b2 (89.24)

By Fact 89.22, Fact 89.24, and BM-SEQUENCE,

Write(c, n, v) �m b1, n : τ2, b2

as required.

Lemma 90 (Strong Update Preserves Block Well-Formedness).

If ∅ � b1, n : τ1, b2,

∅ � τ2,

and SizeOf(τ1) = SizeOf(τ2),

then ∅ � b1, n : τ2, b2

218

Proof. Immediate from the form of WF-NDBLOCK and the given assumptions.

Lemma 91 (Consistent Block Updating).

If ∅ � h, (91.1)

s �m h, (91.2)

h = h0 ∗ `j 7→ b1,

`j ∈ Clocs(r, m), (91.3)

c �m b2, (91.4)

s2 = s[r 7→ c],

and h2 = h0 ∗ `j 7→ b2, (91.5)

then s2 �m h2.

Proof. By Definition 23, we must show

1. ∀`j ∈ dom(h). `j ∈ dom(m)

2. rng(m) ⊆ dom(s2)

3. For all r′ ∈ dom(s2), either

(a) exists `′k ∈ Clocs(r′, m), h = h′0 ∗ `′k 7→ b, and s2(r′) �m b, or

(b) Clocs(r′, m) ∩ dom(h) = ∅, h = h′0 ∗
∼
` 7→ b, and s2(r′) �m b

Note (1) and (2) follow immediately from the assumptions.

We choose an arbitrary r′ ∈ dom(s′) and show that one of the conditions of (3) is satisfied.

We split cases on whether r′ = r.

Case r′ = r

Then

s2(r′) = c

And, by Fact 91.3,

`j ∈ Clocs(r′, m)

Note also that, by Fact 91.5,

h2 = h0 ∗ `j 7→ b2

while, by Fact 91.4,

c �m b2

219

so (3a) is satisfied.

Case r′ 6= r

By Definition 23 and Fact 91.2, either

1. exists `′k ∈ Clocs(r′, m), h = h′0 ∗ `′k 7→ b, and s(r′) �m b, or

2. exists `′k ∈ Clocs(r′, m), Clocs(r′, m) ∩ dom(h2) = ∅, h = h′0 ∗
∼
` 7→ b, and s(r′) �m b

Suppose (1) holds. The only rule that could have been used to prove Fact 91.1 is WF-

HCONCRETE, by which we have

`′ 6= `

so by Fact 91.5,

h2 = h′′0 ∗ `′k 7→ b

Since r′ 6= r,

s2(r′) = s(r′)

so

s2(r′) �m b

and (3a) is satisfied.

In the case where (2) initially holds, it is easy to show that (3b) holds after the store is

updated.

Lemma 92 (Relating Typed Values’ Input and Output Heaps).

If G, ∅, h `m, I v : τ/h′

and ∅ � h, (92.1)

then ∅ ` h <: h′

and ∅ � h′.

Proof. The proof proceeds by induction on the derivation of G, ∅, h `m, I v : τ/h′. We split cases

on the final rule used.

Case T-PURE

By the form of the rule, h′ = h, so the desired conclusions follow from Fact 92.1 and

Lemma 36.

220

Case T-SUB

By the form of the rule,

G, ∅, h `m, I v : τ1/h1 (92.2)

∅ ` τ1/h1 <: τ/h′ (92.3)

∅ � τ/h′ (92.4)

By the inductive hypothesis and Fact 92.2,

∅ ` h <: h1 (92.5)

Fact 92.3 can only be proved by <:-WORLD, from which we have

∅ ` h1 <: h′ (92.6)

By Fact 92.5, Fact 92.6, and Lemma 35,

∅ ` h <: h′

The only rule that can be used to prove Fact 92.4 is WF-WORLD, from which we have

Γ � h′

as required.

Case T-IF, T-LET, T-READ, T-SUPD, T-WUPD, T-UNFOLD, T-FOLD, T-CALL, T-MALLOC

Impossible, as the expression considered in each case is not a value.

C.19 Preservation

Lemma 93 (Pure Expression Preservation). If ∅ `m a : τ and a ↪→ a′, then ∅ `m a′ : τ.

Proof. The proof proceeds by induction on the derivation of ∅ `m a : τ. We split cases on the

final rule used.

Case T-VAR

Impossible.

Case T-INT, T-REF

Since a is a value, there is no a′ such that a ↪→ a′.

221

Case T-ARITH

By the form of the rule,

a ≡ v1 ◦ v2

∅ `m v1 : int(w, i1) (93.1)

∅ `m v2 : int(w, i2) (93.2)

τ = {ν : int(w, i1
∼◦ i2) | ν = v1 ◦ v2} (93.3)

By Fact 93.1 and Lemma 72,

v1 = n1|w|

n1
∼
⊆ i1 (93.4)

By Fact 93.2 and Lemma 72,

v2 = n2|w|

n2
∼
⊆ i2 (93.5)

The only evaluation rule that applies is E-ARITH, from which we have

a′ ≡ (n1 ◦ n2)|w|

By T-INT,

∅ `m (n1 ◦ n2)|w| : {ν : int(w, n1 ◦ n2) | ν = (n1 ◦ n2)|w|} (93.6)

By Fact 93.4, Fact 93.5, and Proposition 3,

n1 ◦ n2
∼
⊆ i1

∼◦ i2 (93.7)

By Assumption 13,

∅ � ν = (n1 ◦ n2)|w| ⇒ ν = n1|w| ◦ n2|w| (93.8)

By Fact 93.8, Fact 93.7, and <:-INT,

∅ ` {ν : int(w, n1 ◦ n2) | ν = (n1 ◦ n2)|w|} <: {ν : int(w, i1
∼◦ i2) | ν = n1|w| ◦ n2|w|}

(93.9)

By Fact 93.6, Fact 93.9, and T-PURESUB,

∅ `m (n1 ◦ n2)|w| : {ν : int(w, i1
∼◦ i2) | ν = n1|w| ◦ n2|w|}

222

as required.

Case T-PTRARITH

By the form of the rule,

a ≡ v1 +p v2

∅ `m v1 : ref(`, i1) (93.10)

∅ `m v2 : int(w, i2) (93.11)

τ = {ν : ref(`, i1
∼
+ i2) | ν = v1 +p v2} (93.12)

By Fact 93.10 and Lemma 72,

v = 0|W|

or

v = bref(r, n, z)

n ∈ [[i1]]

∃`j v `.`j ∈ Clocs(r, m)

We now split cases.

Case v = 0|W|
Then the evaluation rule which applied must have been E-NULL-PLUS. Then

a′ ≡ 0|W|

v2 = m|W|

` =
∼
`

By <:-NULL,

∅ ` {ν : int(W, 0) | ν = 0|W|} <: {ν : ref(
∼
` , i1

∼◦ i2) | ν = 0|W|}

By Assumption 13,

∅ � ν = 0|W| ⇒ ν = 0|W| +p m|W|

By the above and <:-REF,

∅ ` {ν : ref(
∼
` , i1

∼◦ i2) | ν = 0|W|} <: {ν : ref(
∼
` , i1

∼◦ i2) | ν = 0|W| +p m|W|}

223

We can tie these subtyping relations together with <:-TRANS:

∅ ` {ν : int(W, 0) | ν = 0|W|} <: {ν : ref(
∼
` , i1

∼◦ i2) | ν = 0|W| +p m|W|}

By T-INT,

∅ `m 0|W| : {ν : int(W, 0) | ν = 0|W|}

By the above and T-PURESUB,

∅ `m 0|W| : {ν : ref(
∼
` , i1

∼◦ i2) | ν = 0|W| +p m|W|}

as required.

Case v = bref(r, n, z)

We assume

n ∈ [[i1]]

∃`j v `.`j ∈ Clocs(r, m) (93.13)

By Fact 93.11 and Lemma 72,

v2 = m|w|

m
∼
⊆ i2 (93.14)

The evaluation rule which applied must have been E-INT-PLUS. From the form of the rule,

a′ ≡ bref(r, n + m, z)

By T-REF and Fact 93.13,

∅ `m bref(r, n + m, z) : {ν : ref(`j, n + m) | ν = bref(r, n + m, z)} (93.15)

By n
∼
⊆ i1, Fact 93.14, and Proposition 3,

n + m
∼
⊆ i1

∼
+ i2 (93.16)

By Assumption 13,

∅ � ν = bref(r, n + m, z)⇒ ν = bref(r, m, z) + bref(r, m, z) (93.17)

224

By Fact 93.17, Fact 93.16, and <:-REF,

∅ `{ν : ref(`j, n + m) | ν = bref(r, n + m, z)} <:

{ν : ref(`j, i1
∼
+ i2) | ν = bref(r, n, z) +p bref(r, m, z)} (93.18)

By Fact 93.15, Fact 93.18, and T-PURESUB,

∅ `m bref(r, n + m, z) : {ν : ref(`j, i1
∼
+ i2) | ν = bref(r, n, z) +p bref(r, m, z)}

(93.19)

If ` = `j, this completes the proof of this case. Otherwise, by Fact 93.13 and Definition 21, it must

be that ` =
∼
` . By <:-ABSTRACT,

∅ `{ν : ref(`j, i1
∼
+ i2) | ν = bref(r, n, z) +p bref(r, m, z)} <:

{ν : ref(
∼
` , i1

∼
+ i2) | ν = bref(r, n, z) +p bref(r, m, z)} (93.20)

By Fact 93.19, Fact 93.20, and T-PURESUB,

∅ `m bref(r, n + m, z) : {ν : ref(
∼
` , i1

∼
+ i2) | ν = bref(r, n, z) +p bref(r, m, z)}

as required.

Case T-RELATION

By the form of the rule,

a ≡ v1 ./ v2

τ = {ν : int(W, [0, 1]01) | if v1 ./ v2 then ν = 1|W| else ν = 0|W|}

By the form of the expression, one of the evaluation rules E-REL-TRUE or E-REL-FALSE must

have been used. We consider only the E-REL-TRUE case; the other is similar. Then

a′ ≡ 1|W|

v1 ./ v2 (93.21)

By T-INT,

∅ `m a′ : {ν : int(W, 1) | ν = 1|W|} (93.22)

By Fact 93.21 and Assumption 13, v1 ./ v2 is valid, so, by the laws of propositional logic,

∅ � ν = 1|W| ⇒ if v1 ./ v2 then ν = 1|W| else ν = 0|W| (93.23)

225

By Proposition 2,

1
∼
⊆ [0, 1]01 (93.24)

By Fact 93.23, Fact 93.24, and <:-INT,

∅ ` {ν : int(W, 1) | ν = 1|W|}

<: {ν : int(W, [0, 1]01) | if v1 ./ v2 then ν = 1|W| else ν = 0|W|} (93.25)

By Fact 93.22, Fact 93.25, and T-PURESUB,

∅ `m a′ : {ν : int(W, [0, 1]01) | if v1 ./ v2 then ν = 1|W| else ν = 0|W|} (93.26)

as required.

Case T-PURESUB

By the form of the rule,

∅ `m a : τ1 (93.27)

∅ ` τ1 <: τ (93.28)

∅ � τ (93.29)

By the inductive hypothesis and Fact 93.27,

∅ `m a′ : τ1 (93.30)

By Fact 93.28, Fact 93.29, Fact 93.30, and T-PURESUB,

∅ `m a′ : τ

as required.

226

Lemma 94 (Type Preservation).

If G, ∅, h `m, I e : τ/h′,

∅ � h, (94.1)

s �m h, (94.2)

� m, (94.3)

� G, (94.4)

D � G, (94.5)

and e/s ↪→ e′/s′,

then there exist hs, m′ such that

G, ∅, hs `m′ , I e′ : τ/h′,

∅ � hs,

s′ �m′ hs,

� m′,

m ⊆ m′,

and dom(m′ \m) ⊆ I.

Proof. The proof proceeds by induction on the derivation of G, ∅, h `m, I e : τ/h′. We split cases

on the final rule used. Unless noted otherwise, we let m′ = m and hs = h.

Case T-PURE

Immediate from Lemma 93.

Case T-SUB

By the form of the rule,

G, ∅, h `m, I e : τ1/h1 (94.6)

∅ ` τ1/h1 <: τ/h (94.7)

∅ � τ/h (94.8)

By the initial assumptions, Fact 94.6, and the inductive hypothesis, there exist hs and m′ such that

G, ∅, hs `m′ , I e′ : τ1/h1 (94.9)

∅ � hs

s′ �m′ hs

� m′

m ⊆ m′

dom(m′ \m) ⊆ I

227

Most obligations follow immediately. By Fact 94.9, Fact 94.7, Fact 94.8, and T-SUB,

G, ∅, hs `m′ , I e′ : τ/h,

as required.

Case T-IF

By the form of the rule,

e ≡ if v then e1 else e2

G, v 6= 0, h `m, I1 e1 : τ/h′ (94.10)

G, v = 0, h `m, I2 e2 : τ/h′ (94.11)

The only evaluation rules that could have applied are E-IF-TRUE and E-IF-FALSE. We show only

the E-IF-TRUE case; the case for E-IF-FALSE is similar.

By the form of E-IF-TRUE, we have

v = 1|W|

e′ ≡ e1

s′ = s

By Assumption 13,

1|W| 6= 0

is valid, so, by WFSUBST-PRED,

v 6= 0 �m ·

By the above, Fact 94.10, and Lemma 58, then,

G, ∅, h `m, I e1 : τ/h′

as required.

Case T-LET

By the form of the rule,

e ≡ let x = e1 in e2

I = I1 ∪ I2 (94.12)

I1 ∩ I2 = ∅ (94.13)

G, ∅, h `m, I1 e1 : τ1/h1 (94.14)

G, x : τ1, h1 `m, I2 e2 : τ/h′ (94.15)

∅ � τ/h′ (94.16)

228

We split cases on whether e1 is a value.

Case e1 is not a value

Then the only evaluation rule that applies is E-SEQ, so that we have:

e1/s ↪→ e′1/s′

e′ ≡ let x = e′1 in e2

By the inductive hypothesis and Fact 94.14,

G, ∅, hs `m′ , I1
e′1 : τ1/h1 (94.17)

for some hs and m′ such that

∅ � hs

s′ �m′ hs

m ⊆ m′

� m′

dom(m′ \m) ⊆ I1. (94.18)

Most obligations follow immediately. By Fact 94.13, Fact 94.15, Fact 94.18, and Lemma 22,

G, x : τ1, h1 `m′ , I2
e2 : τ/h′ (94.19)

By Fact 94.12, Fact 94.17, Fact 94.19, Fact 94.16, and T-LET,

G, ∅, hs `m′ , I let x = e′1 in e2 : τ/h

as required.

Case e1 ≡ v for some value v

The only evaluation rule that applies is E-LET. From the form of the rule, we have:

e′ ≡ e2[x 7→ v]

s′ = s

The only rule that could have been used to prove Fact 94.14 is T-PURE, from which we have

∅ ` v : τ1

By WF-VAR, then,

∅ �m [x 7→ v] (94.20)

229

By Fact 94.20, Fact 94.15, and Lemma 58,

G, ∅, h1[x 7→ v] `m, I2 e2[x 7→ v] : τ[x 7→ v]/h′[x 7→ v]

By Fact 94.16 and Lemma 28,

FV(τ) = ∅

FV(h′) = ∅

So the above is equivalent to

G, ∅, h1[x 7→ v] `m, I2 e2[x 7→ v] : τ/h′ (94.21)

By Fact 94.14 and Lemma 92,

∅ ` h <: h1 (94.22)

∅ � h1 (94.23)

By Fact 94.23 and Lemma 28,

FV(h1) = ∅ (94.24)

so

h1[x 7→ v] = h1 (94.25)

so we have

G, ∅, h1 `m, I2 e2[x 7→ v] : τ/h′ (94.26)

By Fact 94.12 and Lemma 19,

G, ∅, h1 `m, I e2[x 7→ v] : τ/h′

which settles type preservation. By Fact 94.22, Fact 94.2, and Lemma 78,

s �m h1

Thus, we let

hs = h1,

which satisfies the heap well-formedness and modeling requirements.

230

Case T-READ

By the form of the rule,

e ≡ ∗nv

h = h1 ∗ `j 7→ . . . , i : τ, . . . (94.27)

h′ = h

∅ `m v : {ν : ref(`j, i) | Safe(ν, n)} (94.28)

The only evaluation rule that applies is E-READ, from which we have

v = bref(r, n, z)

e′ ≡ s(r)(n)

s′ = s

for some r, n, and z. By Fact 94.28, Fact 94.27, Fact 94.1, Fact 94.2, and Fact 94.3,

∅ `m s(r)(n) : τ

By the above and T-PURE,

G, ∅, h `m, s(r)(n) : τ/h

as required.

Case T-SUPD

By the form of the rule,

e ≡ ∗v1 := v2

τ = void

∅ `m v1 : {ν : ref(`j, n) | Safe(ν, SizeOf(τ2))} (94.29)

∅ `m v2 : τ2 (94.30)

SizeOf(τ2) = SizeOf(τ1) (94.31)

h = h1 ∗ `j 7→ b1, n : τ1, b2 (94.32)

h′ = h1 ∗ `j 7→ b1, n : τ2, b2

231

The only evaluation rule that applies is E-WRITE, from which we have

v1 = bref(r, k, z)

e′ ≡ 0|0|

r ∈ dom(s) (94.33)

s(r) = c

s′ = s[r 7→Write(c, k, v2)]

for some r, k, and z. By Fact 94.29 and Lemma 72,

k = n

`j ∈ Clocs(r, m) (94.34)

By Fact 94.30 and Lemma 39,

∅ � τ2 (94.35)

By Fact 94.1, Fact 94.2, Fact 94.3, Fact 94.32, Fact 94.33, Fact 94.34, and Lemma 83,

c �m b1, n : τ1, b2 (94.36)

The only rule that could have been used to prove Fact 94.1 is WF-HCONCRETE, by which we

have

∅ � b1, n : τ1, b2 (94.37)

∅ � h1 (94.38)

By Fact 94.36, Fact 94.37, Fact 94.30, Fact 94.35, Fact 94.31, and Lemma 89,

Write(c, n, v2) �m b1, n : τ2, b2 (94.39)

We let

hs = h′ (94.40)

By Fact 94.1, Fact 94.2, Fact 94.34, Fact 94.39, Fact 94.40, and Lemma 91,

s′ �m hs

as required. By Fact 94.37, Fact 94.35, Fact 94.31, and Lemma 90,

∅ � b1, n : τ2, b2 (94.41)

232

By Fact 94.38, Fact 94.41, Fact 94.40, and WF-HCONCRETE,

∅ � hs

as required. By T-INT, <:-INT, T-PURESUB, and T-PURE,

G, ∅, hs `I, m 0|0| : void/hs

as required.

Case T-WUPD

By the form of the rule,

e ≡ ∗v1 := v2

τ = void

∅ `m v1 : {ν : ref(`j, n+k) | Safe(ν, SizeOf(τ))} (94.42)

∅ `m v2 : τ (94.43)

h = h1 ∗ `j 7→ . . . , n+k : τ, . . . (94.44)

h′ = h

The only evaluation rule that applies is E-WRITE, from which we have

v1 = bref(r, q, z)

e′ ≡ 0|0|

s′ = s[r 7→Write(s(r), q, v2)]

r ∈ dom(s) (94.45)

for some r, q, z. By Fact 94.42 and Lemma 72,

q ∈ [[n+k]] (94.46)

`j ∈ Clocs(r, m) (94.47)

By Fact 94.1, Fact 94.2, Fact 94.3, Fact 94.44, Fact 94.45, Fact 94.47, and Lemma 83,

s(r) �m . . . , n+k : τ, . . . (94.48)

The only rule that could have been used to prove Fact 94.1 is WF-HCONCRETE, by which we

have

∅ � . . . , i : τ, . . . (94.49)

233

By Fact 94.48, Fact 94.49, Fact 94.46, Fact 94.43, and Lemma 87,

Write(s(r), q, v2) �m . . . , i : τ, . . . (94.50)

We let

hs = h (94.51)

By Fact 94.1, Fact 94.2, Fact 94.47, Fact 94.50, Fact 94.51, and Lemma 91,

s′ �m hs

as required. By Fact 94.1 and Fact 94.51,

∅ � hs

as required. Finally, by T-INT, <:-INT, T-PURESUB, and T-PURE,

G, ∅, hs `I, m 0|0| : void/hs

as required.

Case T-UNFOLD

By the form of the rule,

e ≡ letu x = unfold v in e

I = I1 ∪ {`j} (94.52)

∅ `m v : {ν : ref(
∼
` , iy) | ν 6= 0} (94.53)

h = h0 ∗
∼
` 7→ nk : τk, i+ : τ+ (94.54)

xk disjoint (94.55)

xk /∈ e, FV(h) (94.56)

θ = [@nk 7→ xk] (94.57)

Γ1 = xk : θτk (94.58)

`j /∈ h, m (94.59)

h1 = h ∗ `j 7→ nk : {ν = xk}, i+ : θτ+ (94.60)

G, Γ1; x : {ν : ref(`j, iy) | ν = v}, h1 `m, I1 e : τ2/h2 (94.61)

Γ1 � h1 (94.62)

∅ � τ2/h2 (94.63)

234

The only evaluation rule which applies is E-UNFOLD, from which we have:

e′ ≡ e[x 7→ v]

s′ = s

By Fact 94.53 and Lemma 72, either

v = 0|W|

(94.64)

or

v = bref(r, n, z) (94.65)

n ∈ [[iy]] (94.66)

exists `k v
∼
` ∈ Clocs(r, m) (94.67)

By Fact 94.53 and Lemma 27,

v 6= 0|W|

Thus, Fact 94.64 does not hold, and Fact 94.65, Fact 94.66, and Fact 94.67 do. By Fact 94.53 and

Lemma 25,

r ∈ rng(m)

By Definition 23, this implies

r ∈ dom(s)

So there exists a run-time block c such that

s(r) = c

By Fact 94.62, Fact 94.2, Fact 94.3, Fact 94.67, Fact 94.54 and Lemma 82,

c �m nk : τk, i+ : τ+ (94.68)

By Fact 94.68, Fact 94.55, and Lemma 79,

Γ1 �m θh

where θh = [xk 7→ c(nk)] (94.69)

235

By Fact 94.69, Fact 94.61, and Lemma 58,

G, x : {ν : ref(`j, iy) | ν = v}, θhh1 `m, I1 θhe : θhτ2/θhh2

By Fact 94.56, this is equivalent to

G, x : {ν : ref(`j, iy) | ν = v}, θhh1 `m, I1 e : θhτ2/θhh2 (94.70)

By Fact 94.63 and Lemma 28,

FV(τ2/h2) = ∅ (94.71)

By Fact 94.70 and Fact 94.71,

G, x : {ν : ref(`j, iy) | ν = v}, θhh1 `m, I1 e : τ2/h2 (94.72)

We now show location map inclusion, then conclude type preservation. We let

m′ = m[`j 7→ r] (94.73)

Note that, by Fact 94.52,

dom(m′ \m) ⊆ I

as required. By Fact 94.73 and Fact 94.59,

m ⊆ m′ (94.74)

which settles location map inclusion. By Fact 94.74, Fact 94.72, Fact 94.52, and Lemma 22,

G, x : {ν : ref(`j, iy) | ν = v}, θhh1 `m′ , I1
e : τ2/h2 (94.75)

By Fact 94.73, Fact 94.66, Proposition 2, Definition 19, T-REF, and <:-REF,

∅ `m′ bref(r, n, z) : {ν : ref(`j, iy) | ν = bref(r, n, z)}
(94.76)

Define θx by

θx = [x 7→ bref(r, n, z)]

By Fact 94.76 and WFSUBST-VAR,

x : {ν : ref(`j, iy) | ν = bref(r, n, z)} �m′ θx (94.77)

236

By Fact 94.75, Fact 94.77, and Lemma 58,

G, ∅, θxθhh1 `m′ , I1
θxe : θxτ2/θxh2

By Fact 94.71, this implies

G, ∅, θxθhh1 `m′ , I1
θxe : τ2/h2

We assume that

x /∈ FV(h1)

So we have

G, ∅, θhh1 `m′ , I1
θxe : τ2/h2 (94.78)

By Fact 94.78, Fact 94.52, and Lemma 19,

G, ∅, θhh1 `m′ , I θxe : τ2/h2

which settles type preservation. We now show that the new input heap

hs = θhh1

= θhh ∗ `j 7→ nk : {ν = θhxk}, i+ : θhθτ+

is well-formed. By Fact 94.56,

hs = h ∗ `j 7→ nk : {ν = θhxk}, i+ : θhθτ+ (94.79)

By WF-HCONCRETE, we must show

∅ � h (94.80)
∼
` ∈ dom(h) (94.81)

`k /∈ dom(h) (94.82)

∅ � nk : {ν = θhxk}, i+ : θhθτ+ (94.83)

Note that Fact 94.80 was assumed, while Fact 94.81 follows from Fact 94.54. The only rule that

could be used to prove Fact 94.62 is WF-HCONCRETE, from which we have

`k /∈ dom(h) for any k

237

We now show Fact 94.83. By Fact 94.54, the only rule that could have been used to show Fact 94.80

is WF-HABSTRACT, from which we have

∅ �@ nk : τk, i+ : τ+ (94.84)

By Fact 94.58, Fact 94.84, Fact 94.55, Fact 94.56, Fact 94.57, and Lemma 49,

Γ1 � nk : {ν = xk}, i+ : θτ+

By the above, Fact 94.69, and Lemma 53,

∅ � nk : {ν = θhxk}, i+ : θhθτ+

as required. By Fact 94.2, Fact 94.68, Fact 94.59, Fact 94.73, Fact 94.79, and Lemma 76,

s �m′ hs

as required. Finally, we show that m′ is well-formed. Suppose

`′k ∈ Clocs(r, m)

By Fact 94.53 and Lemma 80,

`′ = `

So by Fact 94.73 and Definition 20,

� m′

as required.

Case T-FOLD

By the form of the rule,

h = h0 ∗
∼
` 7→ b1 ∗ `j 7→ b2

∅ ` b2 <: b1 (94.85)

τ = void

h′ = h0 ∗
∼
` 7→ b1

The only evaluation rule that applies is E-FOLD, from which we have

e′ ≡ 0|0|

s′ = s

238

We define the output heap hs as

hs = h′

= h0 ∗
∼
` 7→ b1

By Fact 94.1, Fact 94.2, Fact 94.3, Fact 94.85, and Lemma 81,

s �m hs

The only rule that could have been used to show Fact 94.1 is WF-HCONCRETE, from which we

have

∅ � hs

By T-INT, T-PURESUB, and T-PURE,

G, ∅, hs `m, 0|0| : void/h′

Thus, all the obligations are satisfied.

Case T-CALL

By the form of the rule

e ≡ f (vj)[` f 7→ `]

h = hu ∗ hm (94.86)

∅ � hm (94.87)

∅ � hu (94.88)

G(f) = (xj : τj)/h f → τ′/h′f (94.89)

θ = [xj 7→ vj] (94.90)

ρ = [` f 7→ `] (94.91)

∅ � hu ∗ θρh f (94.92)

∅ `m vj : θρτj (94.93)

∅ ` hm <: θρh f (94.94)

τ = θρτ′

h = hu ∗ θρh′f

By Fact 94.5 and Definition 26,

D(f) = e f (94.95)

239

The only evaluation rule which applies is E-CALL, from which we have

e′ ≡ θρe f (94.96)

s′ = s (94.97)

By Fact 94.87, Fact 94.94, and Lemma 61,∣∣∣Locs(ρh f)
∣∣∣ = ∣∣∣Locs(h f)

∣∣∣ (94.98)

By Fact 94.89, Fact 94.5, Fact 94.95, and Definition 26,

G, xj : τj, h f `∅, I f e f : τ′/h′f (94.99)

By Fact 94.99, Fact 94.98, Fact 94.4, and Lemma 66,

G, xj : ρτj, ρh f `∅, ρI f ρe f : ρτ′/ρh′f (94.100)

By Fact 94.93 and repeated applications of WFSUBST-VAR,

xj : θρτj �m θ (94.101)

By Fact 94.101, Fact 94.99, Fact 94.4, and Lemma 58,

G, ∅, θρh f `∅, ρI f θρe f : θρτ′/θρh′f (94.102)

Since I and I f are both countable, there exists a substitution ω such that

ωρI f = I

By Fact 94.107, and Lemma 18,

G, ∅, ωρθh f `∅, I θρe f : ωθρτ′/ωθρh′f (94.103)

By Fact 94.4 and Definition 25,

� (xj : τj)/h f → τ′/h′f (94.104)

The only rule that could be used to prove Fact 94.104 is WF-FUNSCHEME, from which we have

τj, h f , τ′, h′f abstract (94.105)

xj : τj � h f (94.106)

240

By Fact 94.103 and Fact 94.105,

G, ∅, ρθh f `∅, I θρe f : θρτ′/θρh′f (94.107)

Let

I \ {`j | `j ∈ hu} = ωu I (94.108)

Since I is countable, such a substitution exists. By Fact 94.107, and Lemma 18,

G, ∅, ωuθρh f `∅, ωu I θρe f : ωuθρτ′/ωuθρh′f (94.109)

By Fact 94.92 and Lemma 47,

dom(hu) ∩ dom(θρh f) = ∅ (94.110)

By Fact 94.109, Fact 94.88, Fact 94.117, Fact 94.108, Fact 94.110, and Lemma 69,

G, ∅, hu ∗ωuθρh f `∅, ωu I θρe f : ωuθρτ′/hu ∗ωuθρh′f (94.111)

By Fact 94.111 and Fact 94.105,

G, ∅, hu ∗ θρh f `∅, ωu I θρe f : θρτ′/hu ∗ θρh′f (94.112)

By Fact 94.112, Fact 94.108, and Lemma 19,

G, ∅, hu ∗ θρh f `∅, I θρe f : θρτ′/hu ∗ θρh′f (94.113)

By Fact 94.113, Fact 94.105, and Lemma 23,

G, ∅, hu ∗ θρh f `m, I θρe f : θρτ′/hu ∗ θρh′f (94.114)

which settles type preservation. Let

hs = hu ∗ ρθh f (94.115)

By Fact 94.98, Fact 94.106, and Lemma 63,

xj : ρτj � ρh f (94.116)

By Fact 94.101, Fact 94.116, and Lemma 53,

∅ � θρh f (94.117)

241

By Fact 94.1, Fact 94.86, Fact 94.117, Fact 94.94, and Lemma 48,

∅ � hu ∗ θρh f

which settles heap well-formedness. By Fact 94.94 and Lemma 38,

∅ ` hu ∗ hm <: hu ∗ θρh f (94.118)

By Fact 94.2, Fact 94.118, and Lemma 78,

s �m hu ∗ θρh f (94.119)

as required.

Case T-MALLOC

By the form of the rule,

h = h0 ∗
∼
` 7→ b

h′ = h ∗ `j 7→ b0 (94.120)

τ = {ν : ref(`j, 0) | Allocated(ν, v)}

I = I1 ∪ {`j} (94.121)

`j /∈ h, m (94.122)

∅ � h ∗ `j 7→ b (94.123)

∅ `m v : {ν : int(W, i) | ν ≥ 0} (94.124)

The only evaluation rule that applies is E-MALLOC, from which we have

v = z|W|

e′ ≡ bref(r, 0, z) (94.125)

s′ = s[r 7→ (Z 7→ 0|1|)] (94.126)

r /∈ dom(s) (94.127)

Let

m′ = m[`j 7→ r] (94.128)

By Fact 94.122 and the above,

m ⊆ m′,

242

as required, while, by Fact 94.121,

dom(m′ \m) ⊆ I,

as required. Let

hs = h′ (94.129)

The well-formedness of hs follows by Fact 94.123. By Fact 94.128, Definition 19, and T-REF,

∅ `m′ bref(r, 0, z) : {ν : ref(`j, 0) | ν = bref(r, 0, z)} (94.130)

By Fact 94.124 and Lemma 27,

z ≥ 0 (94.131)

By Fact 94.131, Assumption 13 and Assumption 14,

∅ � ν = bref(r, 0, z)⇒ Allocated(ν, z) (94.132)

From Definition 16 and Definition 15,

Allocated(ν, z) well-sorted in ν : ref(`j, 0) (94.133)

From Fact 94.133 and WF-TYPE,

∅ � {ν : ref(`j, 0) | Allocated(ν, z)} (94.134)

By Fact 94.130, Fact 94.132, Fact 94.134, and T-PURESUB,

∅ `m′ bref(r, 0, z) : {ν : ref(`j, 0) | Allocated(ν, z)} (94.135)

By Fact 94.135, Fact 94.129, and T-PURE,

G, ∅, hs `m′ , bref(r, 0, z) : {ν : ref(`j, 0) | Allocated(ν, z)}/h′

which settles type preservation. By Fact 94.126 and Lemma 73,

s′(r) �m b0 (94.136)

By Fact 94.2, Fact 94.136, Fact 94.122, Fact 94.128, Fact 94.120, Fact 94.126, and Lemma 74,

s′ �m′ hs

243

By Fact 94.2 and Definition 23,

rng(m) ⊆ dom(s) (94.137)

By Fact 94.127 and Fact 94.137,

r /∈ rng(m) (94.138)

By Fact 94.138, Fact 94.128, and Definition 20,

� m′

as required.

C.20 Progress

Lemma 95 (Pure Expression Progress). If ∅ `m a : τ and a is not a value, then there exists a′ such

that a ↪→ a′.

Proof. The proof proceeds by induction on the derivation of ∅ `m a : τ. We split cases on the

final rule used.

Case T-VAR

Impossible.

Case T-INT, T-REF

Impossible, as a is a value.

Case T-ARITH

By the form of the rule,

a ≡ v1 ◦ v2

∅ `m v1 : int(w, i1) (95.1)

∅ `m v2 : int(w, i2) (95.2)

By Lemma 72 and Fact 95.1,

v1 = n1|w| (95.3)

for some n1. By Lemma 72 and Fact 95.2,

v2 = n2|w| (95.4)

244

for some n2. Rule E-ARITH applies:

n1|w| ◦ n2|w| ↪→ (n1 ◦ n2)|w|

as required.

Case T-PTRARITH

By the form of the rule,

a ≡ v1 +p v2

∅ `m v1 : ref(`, i1) (95.5)

∅ `m v2 : int(W, i2) (95.6)

By Lemma 72 and Fact 95.6,

v2 = n2|W| (95.7)

for some n2. By Lemma 72 and Fact 95.5, either

v1 = 0|W| (95.8)

or

v1 = bref(r, n1, z1) (95.9)

for some n1 and z1. In the former case, by Fact 95.7, Fact 95.8, and E-NULL-PLUS, we have

v1 +p v2 ↪→ 0|W|

In the latter case, by Fact 95.7 and Fact 95.9, and E-PTR-PLUS, we have

v1 +p v2 ↪→ bref(r, n1 + n2, z1)

as required.

Case T-RELATION

By the form of the rule,

a ≡ v1 ./ v2

∅ `m v1 : τ1 (95.10)

∅ `m v2 : τ2 (95.11)

245

By Lemma 72, Fact 95.10, and Fact 95.11, there are four cases:

v1 = n1|w|,

v2 = n2|w|

v1 = bref(r, n1, z1),

v2 = 0|W|

v1 = 0|W|,

v2 = bref(r, n2, z2)

v1 = bref(r, n1, z1),

v2 = bref(r, n2, z2)

In each of the above cases, it follows from Definition 5 that

Comparable(v1, v2) (95.12)

Then either rule E-REL-TRUE or E-REL-FALSE applies, i.e.,

v1 ./ v2 ↪→ 1|W|

or

v1 ./ v2 ↪→ 0|W|

as required.

Case T-PURESUB

Follows immediately from the inductive hypothesis.

Lemma 96 (Progress).

If G, ∅, h `m, I e : τ/h′,

s �m h, (96.1)

∅ � h, (96.2)

� m, (96.3)

and D � G (96.4)

then e is a value or there exists e′/s′ such that e/s ↪→ e′/s′.

246

Proof. The proof proceeds by induction on the derivation of G, ∅, h `m, I e : τ/h′. We split cases

on the final rule used.

Case T-PURE

Follows from Lemma 95.

Case T-SUB

Follows from the inductive hypothesis.

Case T-IF

By the form of the rule,

e ≡ if v then e1 else e2

∅ `m v : int(W, i) (96.5)

By Fact 96.5 and Lemma 72,

v = n|W|

for some n. Then either n 6= 0, in which case E-IF-TRUE applies and

e/s ↪→ e1/s

or n = 0 and E-IF-FALSE applies, so

e/s ↪→ e2/s

as required.

Case T-LET

By the form of the rule,

e ≡ let x = e1 in e2

G, ∅, h `m, I e1 : τ1/h1 (96.6)

We split cases on whether e1 is a value.

Case e1 is not a value

Then by Fact 96.6 and the inductive hypothesis, there exist e′1, s′′ such that

e1/s ↪→ e′1/s′′

247

Thus, rule E-SEQ applies, so that

e/s ↪→ let x = e′1 in e2/s′′

as required.

Case e1 = v for some v

Then E-LET applies, and we have

e/s ↪→ e2[x 7→ v]/s

as required.

Case T-READ

By the form of the rule,

e ≡ ∗nv

∅ `m v : {ν : ref(`j, i) | Safe(ν, n)} (96.7)

h = h1 ∗ `j 7→ . . . , i : τ, . . . (96.8)

SizeOf(τ) = n (96.9)

where

Safe(ν, n) , ν 6= 0|W| ∧ BBegin(ν) ≤ ν ∧ ν + n < BEnd(ν) (96.10)

By Fact 96.7 and Lemma 72, either

v = 0|W| (96.11)

or

v = bref(r, p, z) (96.12)

p ∈ [[i]] (96.13)

`j ∈ Clocs(r, m) (96.14)

By Fact 96.7, Fact 96.10, and Lemma 27,

v 6= 0|W| (96.15)

BBegin(v) ≤ v (96.16)

v + n < BEnd(v) (96.17)

248

By Fact 96.15, Fact 96.11 cannot hold, so Fact 96.12, Fact 96.13, and Fact 96.14 must hold. By

Fact 96.16, Fact 96.17, and Assumption 14,

bref(r, 0, l) ≤ bref(r, p, z)

bref(r, p + n, z) < bref(r, z, z)

Equivalently,

0 ≤ p (96.18)

p + n < z (96.19)

By Fact 96.14, Fact 96.1, and Definition 23,

r ∈ dom(s) (96.20)

By Fact 96.18 and the assumption that run-time blocks bind all offsets,

p ∈ dom(s(r)) (96.21)

By Fact 96.7, Fact 96.8, Fact 96.2, Fact 96.1, Fact 96.3,

∅ `m s(r)(p) : τ (96.22)

By Fact 96.22 and Lemma 71,

SizeOf(s(r)(p)) = n (96.23)

By Fact 96.12, Fact 96.18, Fact 96.19, Fact 96.20, Fact 96.20, Fact 96.21, and Fact 96.23, E-READ

applies, so that

∗nv/s ↪→ s(r)(p)/s

as required.

Case T-SUPD, T-WUPD

Similar to T-READ.

Case T-UNFOLD

By the form of the rule,

e ≡ letu x = unfold v in e

249

Rule E-UNFOLD applies, so that

letu x = unfold v in e/s ↪→ e[x 7→ v]/s

as required.

Case T-FOLD

By the form of the rule,

e ≡ fold `

Rule E-FOLD applies, so that

e/s ↪→ 0|0|/s

as required.

Case T-CALL

By the form of the rule,

e ≡ f (vj)

G(f) = (xj : τj)/h f → τ′/h′f

By Fact 96.4 and Definition 26,

D(f) = e f

for some e f . By E-CALL,

f (v)/s ↪→ e f [xj 7→ vj]/s

as required.

Case T-MALLOC

By the form of the rule,

e ≡ malloc(v)

∅ ` v : {ν : int(W, i) | ν ≥ 0} (96.24)

By Lemma 72,

v = n|W| (96.25)

250

By Fact 96.24, Fact 96.25, and Lemma 27,

n ≥ 0 (96.26)

By Fact 96.25 and Fact 96.26, E-MALLOC applies, so that

malloc(v)/s ↪→ 0|1|/s[r 7→ (Z 7→ 0|0|)]

for some r /∈ dom(s), as required.

Lemma 97 (Iterated Preservation).

If G, ∅, h `m, I e : τ/h′,

∅ � h,

s �m h,

� m,

� G,

D � G,

and e/s ↪→n e′/s′,

then there exist hs, m′ such that G, ∅, hs `m′ , I e′ : τ/h′,

∅ � hs,

s′ �m′ hs,

and � m′.

Proof. The proof proceeds by straightforward induction on n, using Lemma 94.

C.21 Type Soundness

Finally, we prove the type soundness theorem, which states that any terminating well-

typed expression evaluates to a value.

251

Theorem 7 (NANOC Type Soundness).

If G, ∅, h `∅, I e : τ/h′, (97.1)

h is abstract, (97.2)

∅ � h, (97.3)

� G, (97.4)

D � G, (97.5)

e/∅ ↪→n e′/s′, (97.6)

and there is no e′′/s′′ such that e′/s′ ↪→ e′′/s′′, (97.7)

then e′ is a value.

Proof. By Fact 97.2 and Definition 23,

∅ �∅ h (97.8)

By Definition 20,

� ∅ (97.9)

By Fact 97.1, Fact 97.3, Fact 97.8, Fact 97.9, Fact 97.4, Fact 97.5, Fact 97.6, and Lemma 97,

G, ∅, hs `m, I e′ : τ/h′, (97.10)

for some hs and m such that

s′ �m hs, (97.11)

∅ � hs, (97.12)

� m. (97.13)

By Fact 97.10, Fact 97.11, Fact 97.12, Fact 97.13, Fact 97.5, Fact 97.7, and Lemma 96, e′ is a

value.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Toward Automated Program Verification
	Quantified Reasoning with Refinement Types
	Liquid Types: A Method for Refinement Type Inference
	Other Approaches to Refinement Type Inference
	Low-Level Liquid Types
	Related Approaches to Verifying Low-Level Programs
	Contributions

	Liquid Types
	Overview
	The L Language and Type System
	Liquid Type Inference
	Implementation and Evaluation

	Low-Level Liquid Types
	Overview
	The NanoC Language and Type System
	Data Structure Verification with Final Fields
	Type Inference
	Implementation and Evaluation

	Conclusions and Future Work
	Polymorphism
	Flow-Sensitive Invariants
	Liquid Types for Dynamic Languages

	Bibliography
	Correctness of Liquid Type Inference
	Dynamic Semantics of NanoC
	Reference Values
	Semantics

	Soundness of NanoC Type Checking
	Proof Overview
	Changes to the Base Language
	Logical Embedding
	Concrete Name Sets
	Relating Run-Time Stores and Heap Types
	Index Properties
	Logical Assumptions
	Relating Logic and Typing
	Environments, Free Variables, and Free Locations
	Subtyping
	Well-Formedness
	Values
	Substitutions
	Location Name Sets
	Location Name Substitution
	Heap Weakening
	Canonical Forms
	Unfolding, Folding, Heap Modeling, Well-Formedness
	Preservation
	Progress
	Type Soundness

